Dongwei Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/213545/publications.pdf

Version: 2024-02-01

13 papers	443 citations	933447 10 h-index	1125743 13 g-index
13	13	13	675 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Functionalized organic nanotubes with highly tunable crosslinking site density for mechanical enhancement and pH-controlled drug release of nanocomposite hydrogels. Polymer Journal, 2022, 54, 67-78.	2.7	7
2	Bioprinted Cancer Model of Neuroblastoma in a Renal Microenvironment as an Efficiently Applicable Drug Testing Platform. International Journal of Molecular Sciences, 2022, 23, 122.	4.1	12
3	Customized composite intervertebral disc scaffolds by integrated 3D bioprinting for therapeutic implantation. Composites Part A: Applied Science and Manufacturing, 2021, 147, 106468.	7.6	14
4	Thiolated gellan gum hydrogels as a peptide delivery system for 3D neural stem cell culture. Materials Letters, 2020, 259, 126891.	2.6	12
5	Stress-relaxing double-network hydrogel for chondrogenic differentiation of stem cells. Materials Science and Engineering C, 2020, 107, 110333.	7.3	43
6	Antibacterial poly (ethylene glycol) diacrylate/chitosan hydrogels enhance mechanical adhesiveness and promote skin regeneration. Carbohydrate Polymers, 2019, 225, 115110.	10.2	121
7	Selective construction of single-walled asymmetrical nanotube by platinum (II)-coordination/dissociation. Materials Letters, 2019, 242, 107-110.	2.6	5
8	Tuning inflammation response via adjusting microstructure of hydroxyapatite and biomolecules modification. Colloids and Surfaces B: Biointerfaces, 2019, 177, 496-505.	5.0	10
9	Sustained release of plasmid DNA from PLLA/POSS nanofibers for angiogenic therapy. Chemical Engineering Journal, 2019, 365, 270-281.	12.7	30
10	3D bioprinting of cell-laden scaffolds for intervertebral disc regeneration. Materials Letters, 2018, 223, 219-222.	2.6	53
11	Moisture-responsive supramolecular nanotubes. Nanoscale, 2018, 10, 20321-20328.	5.6	7
12	A gene-activating skin substitute comprising PLLA/POSS nanofibers and plasmid DNA encoding ANG and bFGF promotes <i>in vivo</i> revascularization and epidermalization. Journal of Materials Chemistry B, 2018, 6, 6977-6992.	5.8	14
13	3D bioprinting of gellan gum and poly (ethylene glycol) diacrylate based hydrogels to produce human-scale constructs with high-fidelity. Materials and Design, 2018, 160, 486-495.	7.0	115