
## Liqiang Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/213506/publications.pdf Version: 2024-02-01



LIOIANC KANC

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Wind erosion rate for vegetated soil cover: A prediction model based on surface shear strength.<br>Catena, 2020, 187, 104398.                                                                        | 5.0 | 39        |
| 2  | Transition model for airflow fields from single plants to multiple plants. Agricultural and Forest<br>Meteorology, 2019, 266-267, 29-42.                                                             | 4.8 | 34        |
| 3  | Cogitation on developing a dynamic model of soil wind erosion. Science China Earth Sciences, 2015, 58, 462-473.                                                                                      | 5.2 | 31        |
| 4  | Characteristics of particle size for creeping and saltating sand grains in aeolian transport.<br>Sedimentology, 2015, 62, 1497-1511.                                                                 | 3.1 | 30        |
| 5  | Wind erosion mass variability with sand bed in a wind tunnel. Soil and Tillage Research, 2017, 165, 181-189.                                                                                         | 5.6 | 28        |
| 6  | Numerical investigation of particle velocity distributions in aeolian sand transport. Geomorphology, 2010, 115, 156-171.                                                                             | 2.6 | 22        |
| 7  | Experimental Investigation on Shear-Stress Partitioning for Flexible Plants with Approximately Zero<br>Basal-to-Frontal Area Ratio in a Wind Tunnel. Boundary-Layer Meteorology, 2018, 169, 251-273. | 2.3 | 21        |
| 8  | Experimental Investigation of the Aerodynamic Roughness Length for Flexible Plants. Boundary-Layer<br>Meteorology, 2019, 172, 397-416.                                                               | 2.3 | 19        |
| 9  | Experimental study on the effect of plant spacing, number of rows and arrangement on the airflow field of forest belt in a wind tunnel. Journal of Arid Environments, 2020, 178, 104169.             | 2.4 | 13        |
| 10 | Aeolian creeping mass of different grain sizes over sand beds of varying length. Journal of<br>Geophysical Research F: Earth Surface, 2015, 120, 1404-1417.                                          | 2.8 | 11        |
| 11 | Experimental study of aeolian sand ripples in a wind tunnel. Earth Surface Processes and Landforms, 2018, 43, 312-321.                                                                               | 2.5 | 10        |
| 12 | Sidewall effects and sand trap efficiency in a large wind tunnel. Earth Surface Processes and Landforms, 2018, 43, 1252-1258.                                                                        | 2.5 | 9         |
| 13 | An improved particle counting method for particle volume concentration in aeolian sand transport.<br>Powder Technology, 2015, 280, 191-200.                                                          | 4.2 | 6         |
| 14 | Particle size characteristics of aeolian ripple crests and troughs. Sedimentology, 2018, 65, 1859-1874.                                                                                              | 3.1 | 6         |
| 15 | A general model for predicting aeolian transport rate over sand surfaces with vegetation cover.<br>Earth Surface Processes and Landforms, 2022, 47, 2471-2482.                                       | 2.5 | 6         |
| 16 | Wind tunnel investigation of horizontal and vertical sand fluxes of ascending and descending sand particles in aeolian sand transport. Earth Surface Processes and Landforms, 2016, 41, 1647-1657.   | 2.5 | 5         |
| 17 | Experimental investigation of mass flux and transport rate of different size particles in mixed sand transport by wind. Geomorphology, 2020, 367, 107320.                                            | 2.6 | 5         |
| 18 | Theoretical analysis of particle number density in steady aeolian saltation. Geomorphology, 2014, 204,<br>542-552.                                                                                   | 2.6 | 4         |

LIQIANG KANG

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Application of a new wind driving force model in soil wind erosion area of northern China. Journal of Arid Land, 2020, 12, 423-435.                                                                                                                | 2.3 | 4         |
| 20 | A modified Raupach's model applicable for shearâ€stress partitioning on surfaces covered with dense<br>and flatâ€shaped gravel roughness elements. Earth Surface Processes and Landforms, 2021, 46, 907-920.                                       | 2.5 | 4         |
| 21 | Influence of dust storms on atmospheric particulate pollution and acid rain in northern China. Air<br>Quality, Atmosphere and Health, 2017, 10, 297-306.                                                                                           | 3.3 | 3         |
| 22 | Estimating fractional cover of non-photosynthetic vegetation in a typical grassland area of northern<br>China based on Moderate Resolution Imaging Spectroradiometer (MODIS) image data. International<br>Journal of Remote Sensing, 2019, , 1-18. | 2.9 | 3         |
| 23 | Variation of bed microtopography with time around an isolated surface-mounted cylindrical roughness element and its influence on wind flow. Aeolian Research, 2021, 50, 100688.                                                                    | 2.7 | 3         |
| 24 | Simulating Airflow Around Flexible Vegetative Windbreaks. Journal of Geophysical Research D:<br>Atmospheres, 2021, 126, e2021JD034578.                                                                                                             | 3.3 | 3         |
| 25 | A modified aeolian flux model applicable for various soil particle characteristics. Catena, 2022, 212, 106042.                                                                                                                                     | 5.0 | 3         |
| 26 | Effect of transverse ridge microtopography on the surface shear stress distribution and soil wind erosion. Soil and Tillage Research, 2020, 198, 104548.                                                                                           | 5.6 | 2         |