Tapomayukh Bhattacharjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2134904/publications.pdf

Version: 2024-02-01

31 papers	586 citations	9 h-index	1125743 13 g-index
31	31	31	529
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Benchmarking Structured Policies and Policy Optimization for Real-World Dexterous Object Manipulation. IEEE Robotics and Automation Letters, 2022, 7, 478-485.	5.1	6
2	Robot-Assisted Feeding: Generalizing Skewering Strategies Across Food Items onÂaÂPlate. Springer Proceedings in Advanced Robotics, 2022, , 427-442.	1.3	3
3	Balancing Efficiency and Comfort in Robot-Assisted Bite Transfer. , 2022, , .		1
4	Material Recognition via Heat Transfer Given Ambiguous Initial Conditions. IEEE Transactions on Haptics, 2021, 14, 885-896.	2.7	9
5	Leveraging Post Hoc Context for Faster Learning in Bandit Settings with Applications in Robot-Assisted Feeding. , 2021, , .		3
6	Adaptive Robot-Assisted Feeding: An Online Learning Framework for Acquiring Previously Unseen Food Items. , 2020, , .		13
7	Is More Autonomy Always Better?. , 2020, , .		24
8	Telemanipulation with Chopsticks: Analyzing Human Factors in User Demonstrations. , 2020, , .		2
9	A Community-Centered Design Framework for Robot-Assisted Feeding Systems. , 2019, , .		18
10	Sensing Shear Forces During Food Manipulation: Resolving the Trade-Off Between Range and Sensitivity. , 2019, , .		10
11	Transfer Depends on Acquisition: Analyzing Manipulation Strategies for Robotic Feeding. , 2019, , .		26
12	Towards Robotic Feeding: Role of Haptics in Fork-Based Food Manipulation. IEEE Robotics and Automation Letters, 2019, 4, 1485-1492.	5.1	38
13	Desk Organization: Effect of Multimodal Inputs on Spatial Relational Learning. , 2019, , .		O
14	Inferring Object Properties with a Tactile-Sensing Array Given Varying Joint Stiffness and Velocity. International Journal of Humanoid Robotics, 2018, 15, 1750024.	1.1	15
15	Multimodal Tactile Perception of Objects in a Real Home. IEEE Robotics and Automation Letters, 2018, 3, 2523-2530.	5.1	27
16	Towards Material Classification of Scenes Using Active Thermography. , 2018, , .		2
17	A force and thermal sensing skin for robots in human environments. Robotics and Autonomous Systems, 2017, 96, 1-14.	5.1	23
18	Small forces that differ with prior motor experience can communicate movement goals during human-human physical interaction. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 8.	4.6	44

#	Article	IF	CITATIONS
19	Older adults' acceptance of a robot for partner dance-based exercise. PLoS ONE, 2017, 12, e0182736.	2.5	64
20	A CRF that combines touch and vision for haptic mapping. , 2016, , .		6
21	Data-driven thermal recognition of contact with people and objects. , 2016, , .		10
22	Multimodal execution monitoring for anomaly detection during robot manipulation. , 2016, , .		54
23	Combining tactile sensing and vision for rapid haptic mapping. , 2015, , .		14
24	Evaluation by Expert Dancers of a Robot That Performs Partnered Stepping via Haptic Interaction. PLoS ONE, 2015, 10, e0125179.	2.5	31
25	Analytical and Psychophysical Comparison of Bilateral Teleoperators for Enhanced Perceptual Performance. IEEE Transactions on Industrial Electronics, 2014, 61, 6202-6212.	7.9	16
26	Rapid categorization of object properties from incidental contact with a tactile sensing robot arm., 2013,,.		16
27	Tactile sensing over articulated joints with stretchable sensors. , 2013, , .		26
28	Haptic classification and recognition of objects using a tactile sensing forearm. , 2012, , .		46
29	Effect of Scaling on the Performance and Stability of Teleoperation Systems Interacting with Soft Environments. Advanced Robotics, 2011, 25, 1577-1601.	1.8	3
30	Control design for human-like reaching movements using redundancy in robot arm-trunk systems. International Journal of Control, Automation and Systems, 2011, 9, 1173-1186.	2.7	6
31	Material Recognition from Heat Transfer given Varying Initial Conditions and Short-Duration Contact., 0, , .		30