Philippe Allongue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2134887/publications.pdf

Version: 2024-02-01

		87888	6	52596
138	6,912	38		80
papers	citations	h-index		g-index
154	154	15/		5277
154	154	154		5277
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	<i>Operando</i> ldentification of the Reversible Skin Layer on Co ₃ O ₄ as a Three-Dimensional Reaction Zone for Oxygen Evolution. ACS Catalysis, 2022, 12, 3256-3268.	11.2	28
2	Insights into the Ochratoxin A/Aptamer Interactions on a Functionalized Silicon Surface by Fourier Transform Infrared and UV–Vis Studies. Langmuir, 2020, 36, 13908-13917.	3.5	11
3	Electrochemical Stability of the Reconstructed Fe ₃ O ₄ (001) Surface. Angewandte Chemie, 2020, 132, 22088-22092.	2.0	O
4	Electrochemical Stability of the Reconstructed Fe ₃ O ₄ (001) Surface. Angewandte Chemie - International Edition, 2020, 59, 21904-21908.	13.8	22
5	<i $>$ In situ $<$ /i $>$ monitoring of electric field effect on domain wall motion in Co ultrathin films in direct contact with an electrolyte. Applied Physics Letters, 2019, 115, .	3.3	7
6	Structure of Mixed Acid/Decyl Monolayers Grafted on Oxide-Free Si(111) Surfaces. Langmuir, 2019, 35, 2547-2553.	3. 5	3
7	Influence of Light Polarization on Photoswitching of Fulgimide Monolayers on Surfaces. Journal of Physical Chemistry C, 2019, 123, 12223-12233.	3.1	2
8	Operando Surface X-ray Diffraction Studies of Structurally Defined Co ₃ O ₄ and CoOOH Thin Films during Oxygen Evolution. ACS Catalysis, 2019, 9, 3811-3821.	11.2	93
9	Direct Li+ incorporation during the anodic formation of compact TiO2 layers. Chemical Communications, 2018, 54, 3251-3254.	4.1	3
10	Potential dependence of the structure and magnetism of electrodeposited Pd/Co/Au(111) layers. Journal of Electroanalytical Chemistry, 2018, 819, 322-330.	3.8	9
11	Transmission Surface Diffraction for Operando Studies of Heterogeneous Interfaces. Journal of Physical Chemistry Letters, 2017, 8, 1067-1071.	4.6	16
12	Epitaxial Electrodeposition of Fe on Au(111): Structure, Nucleation, and Growth Mechanisms. Journal of Physical Chemistry C, 2016, 120, 16080-16089.	3.1	18
13	Electrochemical de-alloying in two dimensions: role of the local atomic environment. Nanoscale, 2016, 8, 13985-13996.	5 . 6	6
14	Influence of Potential on the Electrodeposition of Co on Au (111) by In Situ STM and Reflectivity Measurements. Journal of the Electrochemical Society, 2016, 163, D3062-D3068.	2.9	7
15	In-situ infrared study of silicon in KOH electrolyte: Surface hydrogenation and hydrogen penetration. Surface Science, 2016, 644, 180-190.	1.9	4
16	Film and Interface Atomic Structures of Electrodeposited Co/Au(111) Layers: An in Situ X-ray Scattering Study as a Function of the Surface Chemistry and the Electrochemical Potential. Journal of Physical Chemistry C, 2016, 120, 3360-3370.	3.1	10
17	Oxide Formation and Dissolution on Silicon in KOH Electrolyte: An In-Situ Infrared Study. Journal of the Electrochemical Society, 2016, 163, H327-H338.	2.9	8
18	Electrodeposition of Ag, Pd and Au on Ni monolayer islands on (1 \tilde{A} — 1)-Au(111) by in-situ scanning tunneling microscopy. Electrochimica Acta, 2016, 197, 241-250.	5.2	9

#	Article	IF	CITATIONS
19	In situ surface X-ray diffraction study of ultrathin epitaxial Co films on Au(111) in alkaline solution. Electrochimica Acta, 2016, 197, 273-281.	5.2	16
20	Influence of controlled surface oxidation on the magnetic anisotropy of Co ultrathin films. Applied Physics Letters, $2015, 106, .$	3.3	27
21	Ni electrochemical epitaxy on unreconstructed Au(111): An in-situ STM study. Surface Science, 2015, 631, 135-140.	1.9	3
22	Probing the electrochemical interface with in situ magnetic characterizations: A case study of Co/Au(111) layers. Surface Science, 2015, 631, 88-95.	1.9	8
23	Poly(dimethylsiloxane) as a pre-coating in layer-by-layer films containing phosphotungstate nanoclusters electrochemically sensitive toward s-triazines. RSC Advances, 2014, 4, 29612.	3.6	10
24	Thermal decomposition of alkoxy monolayers grafted on silicon: A mechanistic model. Surface Science, 2013, 609, 230-235.	1.9	1
25	Electrodeposition of NiPd monolayer on Au(111): An in situ scanning tunneling microscopy study. Electrochimica Acta, 2013, 112, 824-830.	5.2	3
26	Quantitative IR Readout of Fulgimide Monolayer Switching on Si(111) Surfaces. Advanced Materials, 2013, 25, 416-421.	21.0	10
27	AuNi alloy monolayer films electrodeposited on Au (111) : An in situ STM study. Surface Science, 2013, 607, 25-32.	1.9	7
28	Improved chemical and electrical stability of gold silicon contacts via epitaxial electrodeposition. Journal of Applied Physics, 2013, 113, 063708.	2.5	5
29	Influence of the surface chemistry on the electric-field control of the magnetization of ultrathin films. Physical Review B, 2012, 86, .	3.2	24
30	Organic Grafting on Si for Interfacial SiO ₂ Growth Inhibition During Chemical Vapor Deposition of HfO ₂ . Chemistry of Materials, 2012, 24, 3135-3142.	6.7	5
31	Kinetics of Activation of Carboxyls to Succinimidyl Ester Groups in Monolayers Grafted on Silicon: An in Situ Real-Time Infrared Spectroscopy Study. Journal of Physical Chemistry C, 2011, 115, 6782-6787.	3.1	17
32	Spin-dependent photoelectron tunneling from GaAs into magnetic cobalt. Physical Review B, 2011, 83, .	3.2	3
33	(Invited) Functionalization and Behavior in Aqueous Media of Silicon Surfaces for Improved Biochemical Sensing. ECS Transactions, 2011, 35, 101-107.	0.5	0
34	Covalent Functionalizations of Silicon Surfaces and Their Application to Biosensors. Science of Advanced Materials, 2011, 3, 332-353.	0.7	23
35	In situ monitoring of the electronic properties and the pH stability of grafted Si(111). Journal of Electroanalytical Chemistry, 2010, 646, 33-42.	3.8	20
36	Epitaxial Growth of Gold on HSi(111): The Determining Role of Hydrogen Evolution. ChemPhysChem, 2010, 11, 2992-3001.	2.1	15

#	Article	IF	CITATIONS
37	Molecular monolayers on silicon as substrates for biosensors. Bioelectrochemistry, 2010, 80, 17-25.	4.6	32
38	Electrochemical growth and dissolution of Ni on bimetallic Pd/Au(111) substrates. Electrochimica Acta, 2010, 55, 8087-8099.	5.2	11
39	Covalent immobilization of amino acids on the porous silicon surface. Surface and Interface Analysis, 2010, 42, 515-518.	1.8	17
40	Electrodeposited magnetic layers in the ultrathin limit. MRS Bulletin, 2010, 35, 761-770.	3.5	23
41	Semiquantitative Study of the EDC/NHS Activation of Acid Terminal Groups at Modified Porous Silicon Surfaces. Langmuir, 2010, 26, 809-814.	3.5	311
42	Functionalized Silicon Surfaces for Biological and Chemical Sensors. Sensor Letters, 2010, 8, 447-456.	0.4	2
43	Selective Growth and Dissolution of Ni on a PdAu Bimetallic Surface by <i>InÂSitu </i> STM: Determining the Relative Adsorbate-Substrate Interaction Energy. Physical Review Letters, 2009, 102, 196101.	7.8	13
44	Electrochemical Growth Gold Buffer Layer on H-Si(111) Surfaces and Their Applications. ECS Transactions, 2009, 19, 197-207.	0.5	0
45	Electronic Properties and pH Stability of Si(111)/Alkyl Monolayers. ECS Transactions, 2009, 19, 373-379.	0.5	3
46	In Situ Infrared Kinetic Study of Multistep Chemical Modifications of Organic Monolayers at Silicon Surfaces. ECS Transactions, 2009, 19, 283-292.	0.5	5
47	Highly sensitive and reusable fluorescence microarrays based on hydrogenated amorphous silicon–carbon alloys. Biosensors and Bioelectronics, 2009, 25, 952-955.	10.1	13
48	Magnetism of electrodeposited ultrathin layers: Challenges and opportunities. Surface Science, 2009, 603, 1831-1840.	1.9	25
49	Electrochemical Au deposition on stepped Si(111)-H surfaces: 3D versus 2D growth studied by AFM and X-ray diffraction. Surface Science, 2009, 603, 1212-1220.	1.9	10
50	Electrochemical transfer at p-type silicon (111) -alkyl monolayer hybrid electrodes in acetonitrile medium. Journal of Electroanalytical Chemistry, 2009, 629, 63-68.	3.8	7
51	Controlled Oxidation of Alkyl Monolayers Grafted onto Flat Si(111) in an Oxygen Plasma of Low Power Density. Journal of Physical Chemistry C, 2009, 113, 14418-14428.	3.1	9
52	Single-step electrochemical nanolithography of metal thin films by localized etching with an AFM tip. Nanotechnology, 2008, 19, 325301.	2.6	24
53	The Titration of Carboxyl-Terminated Monolayers Revisited: In Situ Calibrated Fourier Transform Infrared Study of Well-Defined Monolayers on Silicon. Langmuir, 2008, 24, 9440-9448.	3.5	47
54	Electrochemical growth of ultraflat Au(111) epitaxial buffer layers on H–Si(111). Applied Physics Letters, 2008, 93, .	3.3	38

#	Article	IF	CITATIONS
55	In-situ IR Spectroscopy to Study Anodic Oxidation of Si(111) in KOH Solution. ECS Transactions, 2007, 6, 481-488.	0.5	2
56	Quantitative Infrared Investigation of the Acido-Basic Equilibrium at a Carboxy-Terminated Silicon Surface. ECS Transactions, 2007, 6, 475-479.	0.5	0
57	Mechanisms of Thermal Decomposition of Organic Monolayers Grafted on (111) Silicon. Langmuir, 2007, 23, 1326-1332.	3.5	24
58	Analysis of CapacitancePotential Measurements at the Siliconâ^'Electrolyte Interface Revisited. Journal of Physical Chemistry C, 2007, 111, 5497-5499.	3.1	10
59	Thermal stability of alkoxy monolayers grafted on Si(111). Surface Science, 2007, 601, 3961-3964.	1.9	14
60	Preparation, characterization and magneto-optical investigations of electrodeposited Co/Au films. Journal of Magnetism and Magnetic Materials, 2007, 315, 26-38.	2.3	18
61	Well-Defined Carboxyl-Terminated Alkyl Monolayers Grafted onto Hâ^'Si(111):Â Packing Density from a Combined AFM and Quantitative IR Study. Langmuir, 2006, 22, 153-162.	3.5	172
62	Water Exclusion at the Nanometer Scale Provides Long-Term Passivation of Silicon (111) Grafted with Alkyl Monolayers. Journal of Physical Chemistry B, 2006, 110, 5576-5585.	2.6	54
63	Metal electrodeposition on single crystal metal surfaces mechanisms, structure and applications. Current Opinion in Solid State and Materials Science, 2006, 10, 173-181.	11.5	51
64	Iron passivation studied by in situ Raman spectroscopy on Fe/Au(111) epitaxial films. , 2006, , 89-94.		2
65	Perpendicular anisotropy in electrodeposited Au/Co films. Physica B: Condensed Matter, 2006, 384, 138-140.	2.7	3
66	Self-ordered electrochemical growth on single-crystal electrode surfaces. Journal of Physics Condensed Matter, 2006, 18, S97-S114.	1.8	20
67	Thermal decomposition of alkyl monolayers covalently grafted on (111) silicon. Applied Physics Letters, 2006, 88, 193123.	3.3	28
68	Structure sensitivein situRaman study of iron passive films using SERS-activeFeâ^•Au(111)substrates. Physical Review B, 2005, 71, .	3.2	17
69	Truly Quantitative XPS Characterization of Organic Monolayers on Silicon: Study of Alkyl and Alkoxy Monolayers on Hâ°'Si(111). Journal of the American Chemical Society, 2005, 127, 7871-7878.	13.7	182
70	Intralayer coupling in self-organized Fe nanoclusters grown on vicinal Si(111). Physical Review B, 2004, 70, .	3.2	17
71	Electrodeposition of Fe/Au(111) ultrathin layers with perpendicular magnetic anisotropy. Physica B: Condensed Matter, 2004, 354, 282-285.	2.7	16
72	Electrodeposition of Co and Ni/Au(111) ultrathin layers. Part I: nucleation and growth mechanisms from in situ STM. Surface Science, 2004, 557, 41-56.	1.9	86

#	Article	IF	CITATIONS
73	Semiconducting photocathodes for the reduction of dioxygen. Electrochimica Acta, 2004, 49, 4577-4582.	5.2	6
74	Electrochemically Grown Tin Oxide Thin Films:  In Situ Characterization of Electronic Properties and Growth Mechanism. Journal of Physical Chemistry B, 2004, 108, 8173-8181.	2.6	15
75	Electrochemical Micromachining of p-Type Siliconâ€. Journal of Physical Chemistry B, 2004, 108, 14434-14439.	2.6	52
76	Phenyl layers on H–Si(111) by electrochemical reduction of diazonium salts: monolayer versus multilayer formation. Journal of Electroanalytical Chemistry, 2003, 550-551, 161-174.	3.8	164
77	Electrochemical growth of gold on well-defined vicinal H–Si(111) surfaces studied by AFM and XRD. Surface Science, 2003, 537, 95-112.	1.9	39
78	Electrochemical Characterization of the Open-Circuit Deposition of Platinum on Silicon from Fluoride Solutions. Journal of Physical Chemistry B, 2003, 107, 6454-6461.	2.6	51
79	Strong dependence of the Fe thin-film magnetic anisotropy on the Si(111) substrate preparation. Journal of Applied Physics, 2003, 94, 1490-1494.	2.5	12
80	In-situ magnetic measurements of electrodeposited ultrathin Co, Ni and Fe/Au(111) layers. Physical Chemistry Chemical Physics, 2001, 3, 3330-3335.	2.8	35
81	Cu Electroplating on H-Terminated n-Si(111): Properties and Structure of n-Si/Cu Junctions. Journal of the Electrochemical Society, 2001, 148, C614.	2.9	32
82	Conducting Probe-Mediated Electrochemical Nanopatterning of Molecular Materials. Journal of the American Chemical Society, 2001, 123, 11486-11487.	13.7	17
83	Magnetic properties of electrodeposited Fe/Au(111) layers:. Journal of Magnetism and Magnetic Materials, 2001, 226-230, $1616-1617$.	2.3	11
84	Enhanced interface perpendicular magnetic anisotropy in electrodeposited Co/Au(111) layers. Physical Review B, 2001, 63, .	3. 2	71
85	Structural characterization of organic monolayers on Siã€^111〉 from capacitance measurements. Electrochimica Acta, 2000, 45, 3241-3248.	5. 2	101
86	Anion effect in Co/Au(111) electrodeposition: structure and magnetic behavior. Applied Surface Science, 2000, 164, 22-28.	6.1	56
87	The preparation of flat H–Si(111) surfaces in 40% NH4F revisited. Electrochimica Acta, 2000, 45, 4591-4598.	5.2	157
88	Charge Exchange Processes during the Open-Circuit Deposition of Nickel on Silicon from Fluoride Solutions. Journal of the Electrochemical Society, 2000, 147, 1026.	2.9	90
89	Insights into the Formation Mechanisms of Siâ^'OR Monolayers from the Thermal Reactions of Alcohols and Aldehydes with Si(111)â^'H1. Langmuir, 2000, 16, 7429-7434.	3. 5	199
90	Electrochemical Micromachining. Science, 2000, 289, 98-101.	12.6	551

#	Article	IF	Citations
91	Molecularly Tunable "Organic Capacitorsâ€et Silicon/Aqueous Electrolyte Interfaces1. Journal of Physical Chemistry B, 2000, 104, 11157-11161.	2.6	96
92	Organic monolayers on Si(111) by electrochemical method. Electrochimica Acta, 1998, 43, 2791-2798.	5.2	184
93	Electrochemical Formation of Close-Packed Phenyl Layers on Si(111). Journal of Physical Chemistry B, 1997, 101, 2415-2420.	2.6	316
94	Covalent Modification of Carbon Surfaces by Aryl Radicals Generated from the Electrochemical Reduction of Diazonium Salts. Journal of the American Chemical Society, 1997, 119, 201-207.	13.7	978
95	Anion promoted Ni-underpotential deposition on Au(111). Surface Science, 1997, 384, L836-L843.	1.9	30
96	Digital computation and in situ STM approach of silicon anisotropic etching. Surface Science, 1997, 388, 50-62.	1.9	42
97	Relationship between porous silicon formation and hydrogen incorporation. Thin Solid Films, 1997, 297, 1-4.	1.8	29
98	Molecular Grafting on Si(111) Surfaces: An Electrochemical Approach. Materials Research Society Symposia Proceedings, 1996, 451, 185.	0.1	16
99	Molecular Imaging and Local Density of States Characterization at the Si(111)/NaOH Interface. Physical Review Letters, 1996, 77, 1986-1989.	7.8	60
100	Etching mechanism and atomic structure of H-Si(111) surfaces prepared in NH4F. Electrochimica Acta, 1995, 40, 1353-1360.	5.2	169
101	Evidence for hydrogen incorporation during porous silicon formation. Applied Physics Letters, 1995, 67, 941-943.	3.3	72
102	Atomic Structure of Si Surfaces Etched in Triton/NaOH Solutions. The Journal of Physical Chemistry, 1995, 99, 9472-9478.	2.9	18
103	Probing by in situ scanning tunneling microscopy the influence of an organic additive on Si etching in NaOH. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1994, 12, 1539.	1.6	7
104	Monte-Carlo Simulations of Si Etching: Comparison with in-situ STM images. Microscopy Microanalysis Microstructures, 1994, 5, 257-267.	0.4	6
105	Structure of Si(111) surfaces etched in 40% NH4F: Influence of the doping. Microscopy Microanalysis Microstructures, 1994, 5, 291-299.	0.4	13
106	Metal electrodeposition on semiconductors. Journal of Electroanalytical Chemistry, 1993, 362, 79-87.	3.8	46
107	Metal electrodeposition on semiconductors. Journal of Electroanalytical Chemistry, 1993, 362, 89-95.	3.8	40
108	Influence of the doping concentration on the electrochemical etching of semiconductors. Electrochimica Acta, 1993, 38, 889-895.	5.2	8

#	Article	IF	Citations
109	Etching of Silicon in NaOH Solutions: II . Electrochemical Studies of $n\hat{a}\in Si(111)$ and (100) and Mechanism of the Dissolution. Journal of the Electrochemical Society, 1993, 140, 1018-1026.	2.9	241
110	Etching of Silicon in NaOH Solutions: I . In Situ Scanning Tunneling Microscopic Investigation of nâ€Si(111). Journal of the Electrochemical Society, 1993, 140, 1009-1018.	2.9	220
111	The Mechanism of the Anodic Oxidation of Silicon in Acidic Fluoride Solutions Revisited. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1993, 97, 753-757.	0.9	100
112	In situ STM observations of the etching of n-Si(111) in NaOH solutions. Surface Science, 1992, 275, 414-423.	1.9	88
113	Experimental investigation of charge transfer at the semiconductor/electrolyte junction. Electrochimica Acta, 1992, 37, 781-797.	5.2	34
114	Corrosion of Ill–V compounds; a comparative study of GaAs and InP. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 317, 77-99.	0.1	29
115	Study of reaction coupling and interfacial kinetics at semiconductor electrodes by band edge shift measurements. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 300, 261-281.	0.1	25
116	Corrosion of III-V compounds; a comparative study of GaAs and InP. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 316, 57-77.	0.1	16
117	Metal electrodeposition on semiconductors. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 286, 217-237.	0.1	81
118	Charge Transfer Process at Illuminated Semiconductor/Electrolyte Junctions Modified by Electrodeposition of Microscopic Metal Grain. Journal of the Electrochemical Society, 1989, 136, 1027-1033.	2.9	38
119	On the kinetics of charge transfer between an illuminated CdSe electrode and polysulphide electrolyte. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 269, 295-304.	0.1	11
120	Semiconductor electrode modifications: influence on the state distribution at the interface. Electrochimica Acta, 1989, 34, 1717-1722.	5.2	17
121	Semiconductor electrodes modified by electrodeposition of discontinuous metal films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 269, 361-374.	0.1	18
122	Charge transfer and stabilization at illuminated n-GaAs/aqueous electrolyte junctions. Electrochimica Acta, 1988, 33, 79-87.	5.2	28
123	Photoelectrochemical behaviour of GaAs modified by electrodeposition of heteropolyanions. Electrochimica Acta, 1988, 33, 693-699.	5.2	8
124	Steady State Photocapacitance Study of Semiconductor/Electrolyte Junctions II. Surface State Distribution and Charge Transfer Mechanisms. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1988, 92, 895-903.	0.9	27
125	Steady State Photocapacitance Study of Semiconductor/Aqueous Electrolyte Junctions: I. Interest and Difficulties in the Case of nâ€GaAs. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1988, 92, 566-572.	0.9	10
126	Stabilization of n â€ê€‰GaAs in Acidic Concentrated Iodide Electrolytes. Journal of the Electrochemical Society, 1987, 134, 620-625.	2.9	20

#	Article	IF	CITATIONS
127	Schottky barrier formation of various metals on n-GaAs (100) by electrochemical deposition. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1987, 5, 1644.	1.6	54
128	Photocapacitance study of nâ€GaAs/electrolyte interfaces. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1987, 91, 386-390.	0.9	23
129	Comparison between metal and electrolyte/(III–V) semiconductor interfaces. Surface Science, 1986, 168, 356-364.	1.9	12
130	Flatband potential determination and surface modifications at semiconductor-liquid junctions. Solid State Communications, 1985, 55, 49-53.	1.9	26
131	Bandâ€Edge Shift and Surface Charges at Illuminated n â€â€‰GaAs / Aqueous Electrolyte Junction: Surfaceâ€State Analysis and Simulation of Their Occupation Rate. Journal of the Electrochemical Society, 1985, 132, 45-52.	s: 2.9	79
132	Photodissolution Kinetics of n â€â€‰GaAs in 1M KOH  and Calculation of the Stabilization by Se2â the Ru3+ Surface Treatment. Journal of the Electrochemical Society, 1984, 131, 2861-2668.	~'; Effect o	of ₄₇
133	Iâ€"V curve and surface state capacitance at illuminated semiconductor/liquid contacts. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 176, 369-375.	0.1	11
134	Quantitative Comparison of Fermi Level Pinning at GaAs / Metal and GaAs / Liquid Junctions. Jou the Electrochemical Society, 1984, 131, 2563-2569.	ırnal of	42
135	Detailed Analysis of a Redox Stabilized Liquid Junction Solar Cell: Application to the Cell. Journal of the Electrochemical Society, 1983, 130, 2352-2357.	2.9	37
136	Photoelectrochemical behaviour of an n-type GaAs electrode studied by impedance measurements. Determination and simulation of the faradaic resistance. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 119, 371-377.	0.1	14
137	Electrodeposition of Two-Dimensional Magnetic Nanostructures on Single Crystal Electrode Surfaces., 0,, 217-241.		1
138	Electrochemical surface processing of semiconductors at the atomic level., 0,, 240-252.		0