Anton Tadich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2133954/publications.pdf

Version: 2024-02-01

172207 149479 3,514 103 29 56 citations h-index g-index papers 103 103 103 6462 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Formation of a Stable Surface Oxide in MnBi ₂ Te ₄ Thin Films. ACS Applied Materials & Amp; Interfaces, 2022, 14, 6102-6108.	4.0	5
2	Fluorination of the silicon-terminated (100) diamond surface using C60F48. Diamond and Related Materials, 2022, 126, 109084.	1.8	O
3	Magnesium-intercalated graphene on SiC: Highly n-doped air-stable bilayer graphene at extreme displacement fields. Applied Surface Science, 2021, 541, 148612.	3.1	11
4	The effect of salt and particle concentration on the dynamic self-assembly of detonation nanodiamonds in water. Nanoscale, 2021, 13, 14110-14118.	2.8	11
5	Low-Temperature Growth of Graphene on a Semiconductor. Journal of Physical Chemistry C, 2021, 125, 4243-4252.	1.5	6
6	Crossover from 2D Ferromagnetic Insulator to Wide Band Gap Quantum Anomalous Hall Insulator in Ultrathin MnBi ₂ Te ₄ . ACS Nano, 2021, 15, 13444-13452.	7.3	31
7	Role of Order in the Mechanism of Charge Transport across Single-Stranded and Double-Stranded DNA Monolayers in Tunnel Junctions. Journal of the American Chemical Society, 2021, 143, 20309-20319.	6.6	19
8	Increasing the Rate of Magnesium Intercalation Underneath Epitaxial Graphene on 6Hâ€SiC(0001). Advanced Materials Interfaces, 2021, 8, 2101598.	1.9	6
9	Freestanding n-Doped Graphene via Intercalation of Calcium and Magnesium into the Buffer Layer–SiC(0001) Interface. Chemistry of Materials, 2020, 32, 6464-6482.	3.2	28
10	On-Surface Synthesis of Nitrogen-Substituted Gold-Phosphorus Porous Network. Chemistry of Materials, 2020, 32, 8561-8566.	3.2	3
11	High performance broadband photo and soft X-ray detectors based on two dimensional CrSiTe ₃ . Journal of Materials Chemistry C, 2020, 8, 6659-6666.	2.7	13
12	Epitaxial Formation of SiC on (100) Diamond. ACS Applied Electronic Materials, 2020, 2, 2003-2009.	2.0	5
13	Designing Kagome Lattice from Potassium Atoms on Phosphorus–Gold Surface Alloy. Nano Letters, 2020, 20, 5583-5589.	4.5	20
14	Fluorescence and Physico-Chemical Properties of Hydrogenated Detonation Nanodiamonds. Journal of Carbon Research, 2020, 6, 7.	1.4	8
15	Development of a silicon–diamond interface on (111) diamond. Applied Physics Letters, 2020, 116, .	1.5	6
16	Electronic Band Structure of In-Plane Ferroelectric van der Waals β′-In ₂ Se ₃ . ACS Applied Electronic Materials, 2020, 2, 213-219.	2.0	26
17	Increased activity in the oxygen evolution reaction by Fe ⁴⁺ -induced hole states in perovskite La _{1â°'x} Sr _x FeO ₃ . Journal of Materials Chemistry A, 2020, 8, 4407-4415.	5.2	78
18	Enantiospecific Adsorption and Decomposition of Cysteine Enantiomers on the Chiral Cu{421} ^R Surface. Journal of Physical Chemistry C, 2019, 123, 20829-20837.	1.5	8

#	Article	IF	Citations
19	Reversible Oxidation of Blue Phosphorus Monolayer on Au(111). Nano Letters, 2019, 19, 5340-5346.	4.5	27
20	Perovskite Xâ€Ray Detectors: Flexible, Printable Softâ€Xâ€Ray Detectors Based on All″norganic Perovskite Quantum Dots (Adv. Mater. 30/2019). Advanced Materials, 2019, 31, 1970214.	11.1	18
21	Strainâ€Induced Isomerization in Oneâ€Dimensional Metal–Organic Chains. Angewandte Chemie - International Edition, 2019, 58, 18591-18597.	7.2	37
22	Is Charge-Transfer Doping Possible at the Interfaces of Monolayer VSe ₂ with MoO ₃ and K?. ACS Applied Materials & Interfaces, 2019, 11, 43789-43795.	4.0	3
23	Electronic structure and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>p</mml:mi></mml:math> -type conduction mechanism of spinel cobaltite oxide thin films. Physical Review B, 2019, 100, .	1.1	54
24	Flexible, Printable Softâ€Xâ€Ray Detectors Based on Allâ€Inorganic Perovskite Quantum Dots. Advanced Materials, 2019, 31, e1901644.	11.1	221
25	Elucidating the electronic structure of CuWO ₄ thin films for enhanced photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 11895-11907.	5.2	67
26	Tuning the Electronic Structure of NiO via Li Doping for the Fast Oxygen Evolution Reaction. Chemistry of Materials, 2019, 31, 419-428.	3.2	78
27	Electron effective attenuation length in epitaxial graphene on SiC. Nanotechnology, 2019, 30, 025704.	1.3	6
28	Evidence for Primal sp ² Defects at the Diamond Surface: Candidates for Electron Trapping and Noise Sources. Advanced Materials Interfaces, 2019, 6, 1801449.	1.9	75
29	Quasi free-standing epitaxial graphene fabrication on 3C–SiC/Si(111). Nanotechnology, 2018, 29, 145601.	1.3	13
30	XPS/NEXAFS spectroscopic and conductance studies of glycine on AlGaN/GaN transistor devices. Applied Surface Science, 2018, 435, 23-30.	3.1	6
31	Electric-field-tuned topological phase transition in ultrathin Na3Bi. Nature, 2018, 564, 390-394.	13.7	155
32	Thermal Stability and Oxidation of Group IV Terminated (100) Diamond Surfaces. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800283.	0.8	7
33	Iron-based trinuclear metal-organic nanostructures on a surface with local charge accumulation. Nature Communications, 2018, 9, 3211.	5. 8	31
34	Solid source growth of graphene with Ni–Cu catalysts: towards high quality <i>in situ</i> graphene on silicon. Journal Physics D: Applied Physics, 2017, 50, 095302.	1.3	20
35	Germanium terminated (1 0 0) diamond. Journal of Physics Condensed Matter, 2017, 29, 145002.	0.7	7
36	P-type surface transfer doping of oxidised silicon terminated (100) diamond. Applied Physics Letters, 2017, 110, .	1.5	14

#	Article	IF	CITATIONS
37	Depth-profiling of Yb ³⁺ sensitizer ions in NaYF ₄ upconversion nanoparticles. Nanoscale, 2017, 9, 7719-7726.	2.8	36
38	Adsorption differences between low coverage enantiomers of alanine on the chiral Cu{421} ^R surface. Physical Chemistry Chemical Physics, 2017, 19, 13562-13570.	1.3	6
39	Probing the effect of the Pt–Ni–Pt(111) bimetallic surface electronic structures on the ammonia decomposition reaction. Nanoscale, 2017, 9, 666-672.	2.8	22
40	Oxidation of the silicon terminated (1 0 0) diamond surface. Journal of Physics Condensed Matter, 2017, 29, 025003.	0.7	14
41	<i>Quick AS NEXAFS Tool</i> (i>QANT): a program for NEXAFS loading and analysis developed at the Australian Synchrotron. Journal of Synchrotron Radiation, 2016, 23, 374-380.	1.0	110
42	Electronic Properties of High-Quality Epitaxial Topological Dirac Semimetal Thin Films. Nano Letters, 2016, 16, 3210-3214.	4.5	47
43	The surface electronic structure of silicon terminated (100) diamond. Nanotechnology, 2016, 27, 275201.	1.3	24
44	Molecular Doping the Topological Dirac Semimetal Na ₃ Bi across the Charge Neutrality Point with F4-TCNQ. ACS Applied Materials & Dirac Semimetal Na ₃ Bi across the Charge Neutrality Point with F4-TCNQ. ACS Applied Materials & Dirac Semimetal Na ₃ Bi across the Charge Neutrality Point With F4-TCNQ. ACS Applied Materials & Dirac Semimetal Na ₃ Bi across the Charge Neutrality Point With F4-TCNQ. ACS Applied Materials & Dirac Semimetal Na ₃ Bi across the Charge Neutrality Point With F4-TCNQ. ACS Applied Materials & Dirac Semimetal Na ₃ Bi across the Charge Neutrality Point With F4-TCNQ. ACS Applied Materials & Dirac Semimetal Na ₃ Bi across the Charge Neutrality Point With F4-TCNQ. ACS Applied Materials & Dirac Semimetal Na ₄ Bi across the Charge Neutrality Point With F4-TCNQ. ACS Applied Materials & Dirac Semimetal Na ₄ Bi across the Charge Neutrality Point Neutralit	4.0	21
45	Probing Long- and Short-Range Disorder in Y ₂ Ti _{26€"<i>x</i>Sub>Hf_{<i>x</i>Spectroscopy Techniques. Journal of Physical Chemistry C, 2016, 120, 26465-26479.}}	1.5	18
46	High resolution core level spectroscopy of hydrogen-terminated (1 0 0) diamond. Journal of Physics Condensed Matter, 2016, 28, 305001.	0.7	13
47	NEXAFS N K -edge study of the bonding structure on Al/Si doped sputtered CrN coatings. Journal of Alloys and Compounds, 2016, 661, 268-273.	2.8	13
48	Metal Evaporation-Induced Degradation of Fullerene Acceptors in Polymer/Fullerene Solar Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2247-2254.	4.0	13
49	Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing. Physical Review B, 2015, 92, .	1.1	24
50	Extremely high negative electron affinity of diamond via magnesium adsorption. Physical Review B, 2015, 92, .	1.1	34
51	Nitrogen Terminated Diamond. Advanced Materials Interfaces, 2015, 2, 1500079.	1.9	61
52	Creating a Stable Oxide at the Surface of Black Phosphorus. ACS Applied Materials & Diterfaces, 2015, 7, 14557-14562.	4.0	318
53	Single-Molecule Imaging of Activated Nitrogen Adsorption on Individual Manganese Phthalocyanine. Nano Letters, 2015, 15, 3181-3188.	4.5	22
54	A graphene field-effect transistor as a molecule-specific probe of DNA nucleobases. Nature Communications, 2015, 6, 6563.	5.8	90

#	Article	IF	Citations
55	Reversible Tuning of Interfacial and Intramolecular Charge Transfer in Individual MnPc Molecules. Nano Letters, 2015, 15, 8091-8098.	4.5	12
56	Validation of Soil Phosphate Removal by Alkaline and Acidic Reagents in a Vertosol Soil using XANES Spectroscopy. Communications in Soil Science and Plant Analysis, 2015, 46, 1998-2017.	0.6	11
57	Formation of a silicon terminated (100) diamond surface. Applied Physics Letters, 2015, 106, .	1.5	28
58	Graphene field effect transistor as a probe of electronic structure and charge transfer at organic molecule–graphene interfaces. Nanoscale, 2015, 7, 1471-1478.	2.8	34
59	Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission. Journal of Physics Condensed Matter, 2014, 26, 395008.	0.7	4
60	Air-stable doping of Bi<inf>2</inf>Se<inf>3</inf> by MoO<inf>3</inf> into the topological regime. , 2014 , , .		0
61	Surface and interface analysis of poly-hydroxyethylmethacrylate-coated anodic aluminium oxide membranes. Applied Surface Science, 2014, 289, 560-563.	3.1	14
62	Phase Transformation in Laserâ€Induced Microâ€Explosion in Olivine (Fe,Mg) ₂ SiO ₄ . Advanced Engineering Materials, 2014, 16, 767-773.	1.6	16
63	Band alignments of different buffer layers (CdS, Zn(O,S), and In2S3) on Cu2ZnSnS4. Applied Physics Letters, 2014, 104, .	1.5	148
64	Diffraction and spectroscopic study of pyrochlores Bi2â^'xFe1+xSbO7. Journal of Alloys and Compounds, 2014, 589, 425-430.	2.8	8
65	Photoelectron emission from lithiated diamond. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2209-2222.	0.8	30
66	Air-Stable Electron Depletion of Bi ₂ Se ₃ Using Molybdenum Trioxide into the Topological Regime. ACS Nano, 2014, 8, 6400-6406.	7.3	29
67	Stability and Surface Reconstruction of Topological Insulator Bi ₂ Se ₃ on Exposure to Atmosphere. Journal of Physical Chemistry C, 2014, 118, 20413-20419.	1.5	62
68	Charge Transfer Doping of Silicon. Physical Review Letters, 2014, 112, 155502.	2.9	22
69	The templated growth of a chiral transition metal chalcogenide. Surface Science, 2014, 629, 94-101.	0.8	4
70	Tuning the charge carriers in epitaxial graphene on SiC(0001) from electron to hole via molecular doping with C60F48. Applied Physics Letters, 2013, 102, .	1.5	29
71	NEXAFS spectroscopy of CVD diamond films exposed to fusion relevant hydrogen plasma. Diamond and Related Materials, 2013, 34, 45-49.	1.8	19

Structural and magnetic studies of the electron doped manganites
Sr_{0.65}Pr_{0.35a^3<i>x</i>}Ce_{<i>x</i>}MnO₃(0.00 a\frac{1}{2}) \text{x} \text{i} \text{a} \text{dip} T j ETQqQ 0 0 rgBT j

#	Article	IF	Citations
73	Doping efficiency and energy-level scheme in C60F48-doped zinc–tetraphenylporphyrin films. Organic Electronics, 2013, 14, 169-174.	1.4	22
74	Investigating the Local Structure of Lanthanoid Hafnates Ln ₂ Hf ₂ O ₇ via Diffraction and Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 2266-2273.	1.5	80
75	Anion Disorder in Lanthanoid Zirconates Gd2–xTbxZr2O7. Inorganic Chemistry, 2013, 52, 8409-8415.	1.9	20
76	Valence-band structure and critical point energies of diamond along [100]. Physical Review B, 2013, 87, .	1.1	7
77	Diamond Surfaces with Airâ€Stable Negative Electron Affinity and Giant Electron Yield Enhancement. Advanced Functional Materials, 2013, 23, 5608-5614.	7.8	58
78	Surface transfer doping of hydrogen-terminated diamond by C60F48: Energy level scheme and doping efficiency. Journal of Chemical Physics, 2012, 136, 124701.	1.2	59
79	p-f hybridization in the ferromagnetic semiconductor HoN. Applied Physics Letters, 2012, 100, 072108.	1.5	10
80	Surface transfer doping of diamond with a molecular heterojunction. Applied Physics Letters, 2012, 100, .	1.5	17
81	Investigating the Enantioselectivity of Alanine on a Chiral $Cu\{421\}$ < $sup > R < / sup > Surface$. Journal of Physical Chemistry C, 2012, 116, 9472-9480.	1.5	19
82	New Insights into the Substrate–Plasma Polymer Interface. Journal of Physical Chemistry B, 2011, 115, 6495-6502.	1.2	23
83	Work function, band bending, and electron affinity in surface conducting (100) diamond. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2062-2066.	0.8	25
84	Fluorination of the diamond surface by photoinduced dissociation of C60F48. Physical Review B, 2011, 84, .	1.1	15
85	Determining the Orientation of a Chiral Substrate Using Full-Hemisphere Angle-Resolved Photoelectron Spectroscopy. Physical Review Letters, 2011, 107, 175501.	2.9	5
86	Electronic structure of EuN: Growth, spectroscopy, and theory. Physical Review B, 2011, 84, .	1.1	38
87	Surface band bending and electron affinity as a function of hole accumulation density in surface conducting diamond. Applied Physics Letters, 2011, 98, 102101.	1.5	28
88	The Current Performance of the Wide Range (90–2500 eV) Soft X-ray Beamline at the Australian Synchrotron. AIP Conference Proceedings, 2010, , .	0.3	168
89	Full Hemisphere Fermi Surface Mapping Using A Novel Toroidal Electron Spectrometer. , 2010, , .		3
90	Sculpting nanoscale precipitation patterns in nanocomposite thin films via hyperthermal ion deposition. Applied Physics Letters, 2010, 97, .	1.5	14

#	Article	IF	CITATIONS
91	Electronic States Studies of ZnOâ^•TiO[sub 2] Core-Shell Nanostructure by Photoelectron Spectroscopy and X-Ray Absorption Near Edge Spectroscopy. , 2010, , .		0
92	Apparent "three-dimensional―Fermi surface of transition-metal monolayers. Physical Review B, 2009, 79, .	1.1	5
93	Photoabsorption and photoemission of magnesium diboride at the Mg K edge. Journal of Physics Condensed Matter, 2009, 21, 405701.	0.7	4
94	Electronic properties of clean unreconstructed 6H–SiC(0001) surfaces studied by angle resolved photoelectron spectroscopy. Surface Science, 2006, 600, 3845-3850.	0.8	13
95	Structural and electronic properties of graphite layers grown on SiC(0001). Surface Science, 2006, 600, 3906-3911.	0.8	178
96	Publisher's Note: Correlation effects at idealSiC $\{0001\}$ â^' $(1$ Ã $-1)$ surfaces [Phys. Rev. B73, 075412 (2006)]. Physical Review B, 2006, 73, .	1.1	1
97	Correlation effects at idealSiC $\{0001\}$ â $^{\circ}(1$ Ã $-1)$ surfaces. Physical Review B, 2006, 73, .	1.1	22
98	Mapping disorder–order induced changes to the Fermi surface of Cu3Au using a new toroidal electron energy analyser. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 515-518.	0.8	1
99	First results from a second generation toroidal electron spectrometer. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 1001-1004.	0.8	59
100	Surface Band Structure Studies of Si Rich Reconstructions on 4H-SiC(1-100). Materials Science Forum, 2005, 483-485, 547-550.	0.3	4
101	Hydrogen terminated 4Hâ^'SiC(11¯00)and(112¯0)surfaces studied by synchrotron x-ray photoelectron spectroscopy. Physical Review B, 2005, 71, .	1.1	33
102	Al2O3 prepared by atomic layer deposition as gate dielectric on 6H-SiC(0001). Applied Physics Letters, 2003, 83, 1830-1832.	1.5	98
103	Estimate of control voltage tolerances for a photo-electron analyzer of toroidal design. Brazilian Journal of Physics, 2003, 33, 788-791.	0.7	2