Roger W Whatmore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2133951/publications.pdf

Version: 2024-02-01

178 papers

8,591 citations

42 h-index 88 g-index

181 all docs 181 docs citations

181 times ranked 5293 citing authors

#	Article	IF	CITATIONS
1	Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3. Science, 2006, 311, 1270-1271.	12.6	1,424
2	Pyroelectric devices and materials. Reports on Progress in Physics, 1986, 49, 1335-1386.	20.1	903
3	Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9PbMg1∕3Nb2∕3O3–0.1PbTiO3 near room temperature. Applied Physics Letters, 2006, 89, 242912.	3.3	341
4	Ferroelectric materials for thermal IR detectors. Ferroelectrics, 1987, 76, 351-367.	0.6	203
5	Investigation of the electrocaloric effect in a PbMg2/3Nb1/3O3-PbTiO3 relaxor thin film. Applied Physics Letters, 2009, 95, .	3.3	194
6	Pyroelectric ceramics and devices for thermal infra-red detection and imaging. Ferroelectrics, 1991, 118, 241-259.	0.6	164
7	A neutron diffraction investigation into the rhombohedral phases of the perovskite series. Journal of Physics Condensed Matter, 1998, 10, 6251-6269.	1.8	161
8	Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion. MRS Bulletin, 2014, 39, 1099-1111.	3.5	155
9	Magnetic Fieldâ€Induced Ferroelectric Switching in Multiferroic Aurivillius Phase Thin Films at Room Temperature. Journal of the American Ceramic Society, 2013, 96, 2339-2357.	3.8	154
10	Low temperature crystallization of lead zirconate titanate thin films by a sol-gel method. Journal of Applied Physics, 1999, 85, 7355-7361.	2.5	153
11	Ferroelectric nanoparticles, wires and tubes: synthesis, characterisation and applications. Journal of Materials Chemistry C, 2013, 1, 2618.	5.5	153
12	Structural phase transitions in lead zirconate. Journal of Physics C: Solid State Physics, 1979, 12, 1505-1519.	1.5	141
13	Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanate thin films. IEEE Transactions on Microwave Theory and Techniques, 2001, 49, 769-778.	4.6	139
14	Lithium tetraborate: a new temperature-compensated SAW substrate material. Electronics Letters, 1981, 17, 11.	1.0	138
15	Liquid-phase sintering of PZT ceramics. Journal of the European Ceramic Society, 2000, 20, 2039-2045.	5.7	136
16	A TEM study of ordering in the perovskite, Pb(Sc1/2Ta1/2)O3. Journal of Materials Science, 1986, 21, 4456-4462.	3.7	135
17	Improved ferroelectric and pyroelectric properties in Mn-doped lead zirconate titanate thin films. Journal of Applied Physics, 2003, 94, 5228.	2.5	119
18	Ferroelectric domain configurations in a modified-PZT ceramic. Journal of Materials Science, 1987, 22, 925-931.	3.7	118

#	Article	IF	CITATIONS
19	A Re-investigation of the Crystal Structure of the Perovskite PbZrO3 by X-ray and Neutron Diffraction. Acta Crystallographica Section B: Structural Science, 1997, 53, 135-142.	1.8	116
20	Sol-gel PZT and Mn-doped PZT thin films for pyroelectric applications. Journal Physics D: Applied Physics, 2001, 34, 2296-2301.	2.8	115
21	Structural development in the early stages of annealing of sol–gel prepared lead zirconate titanate thin films. Journal of Applied Physics, 1999, 86, 1662-1669.	2.5	102
22	Studies of the ferroelectric domain configuration and polarization of rhombohedral PZT ceramics. Journal of Physics Condensed Matter, 2000, 12, 323-337.	1.8	100
23	Tricritical behaviour in PbZrxTi1-xO3solid solutions. Journal of Physics C: Solid State Physics, 1978, 11, 3089-3102.	1.5	96
24	Lead scandium tantalate for thermal detector applications. Ferroelectrics, 1990, 106, 387-392.	0.6	95
25	Ferroelectric materials for thermal ir sensors state-of-the-art and perspectives. Ferroelectrics, 1990, 104, 269-283.	0.6	94
26	Direct imaging of travelling Rayleigh waves by stroboscopic X-ray topography. Nature, 1982, 299, 44-46.	27.8	90
27	PST thin films for electrocaloric coolers. Journal Physics D: Applied Physics, 2011, 44, 165407.	2.8	90
28	Title is missing!. Journal of Materials Science Letters, 1998, 17, 1157-1159.	0.5	78
29	Pyroelectric Arrays: Ceramics and Thin Films. Journal of Electroceramics, 2004, 13, 139-147.	2.0	70
30	A TEM and neutron diffraction study of the local structure in the rhombohedral phase of lead zirconate titanate. Journal of Physics Condensed Matter, 1998, 10, 1767-1786.	1.8	68
31	Injection and controlled motion of conducting domain walls in improper ferroelectric Cu-Cl boracite. Nature Communications, 2017, 8, 15105.	12.8	68
32	Pyroelectric ceramics in the lead zirconate-lead titanate-lead iron niobate system. Ferroelectrics, 1981, 35, 155-160.	0.6	66
33	Microstructural characterization of sol–gel lead–zirconate–titanate thin films. Journal of Applied Physics, 1998, 83, 2202-2208.	2.5	65
34	Investigation into the Crystal Structure of the Perovskite Lead Hafnate, PbHfO3. Acta Crystallographica Section B: Structural Science, 1998, 54, 18-28.	1.8	64
35	Structure modification of 0–3 piezoelectric ceramic/polymer composites through dielectrophoresis. Journal Physics D: Applied Physics, 2005, 38, 175-182.	2.8	64
36	Nanoscale Ferroelectric and Piezoelectric Properties of Sb ₂ S ₃ Nanowire Arrays. Nano Letters, 2012, 12, 868-872.	9.1	61

#	Article	IF	CITATIONS
37	e31,fdetermination for PZT films using a conventional `d33' meter. Journal Physics D: Applied Physics, 2001, 34, 1456-1460.	2.8	60
38	The growth of ferroelectric oxides by MOCVD. Ferroelectrics, 1989, 91, 181-192.	0.6	57
39	Pyroelectric ceramics and thin films for uncooled thermal imaging. Ferroelectrics, 2000, 236, 259-279.	0.6	50
40	Using the surface spontaneous depolarization field of ferroelectrics to direct the assembly of virus particles. Applied Physics Letters, 2004, 85, 3537-3539.	3.3	45
41	xmins:mmi="http://www.w3.org/1998/Math/MathML" display="inline"> <mmi:msub><mmi:mrow< td=""><td>3.2</td><td>45</td></mmi:mrow<></mmi:msub>	3.2	45
42	Nanotechnologyâ€"what is it? Should we be worried?. Occupational Medicine, 2006, 56, 295-299.	1.4	44
43	Properties of Bi4Ti3O12–(Na1/2Bi1/2)TiO3Piezoelectric Ceramics. Japanese Journal of Applied Physics, 2002, 41, 7127-7130.	1.5	40
44	Room temperature ferroelectric and magnetic investigations and detailed phase analysis of Aurivillius phase Bi5Ti3Fe0.7Co0.3O15 thin films. Journal of Applied Physics, 2012, 112, .	2.5	40
45	High performance, conducting pyroelectric ceramics. Ferroelectrics, 1983, 49, 201-210.	0.6	37
46	Development of residual stress in sol-gel derived Pb(Zr,Ti)O3 films: An experimental study. Journal of Applied Physics, 2008, 103, 084101.	2.5	37
47	Porous, Functionally Gradient Pyroelectric Materials. Journal of the American Ceramic Society, 2007, 90, 137-142.	3.8	36
48	The structural and piezoresponse properties of $<$ i> $<$ i $<$ -axis-oriented Aurivillius phase Bi5Ti3FeO15 thin films deposited by atomic vapor deposition. Applied Physics Letters, 2012, 101, .	3.3	36
49	Sputtered lead scandium tantalate thin films: Pb4+ in B sites in the perovskite structure. Journal of Applied Physics, 1997, 82, 5686-5694.	2.5	35
50	Characterisation of PZT thin film micro-actuators using a silicon micro-force sensor. Sensors and Actuators A: Physical, 2007, 133, 35-44.	4.1	34
51	Pyroelectric response of lead zirconate titanate thin films on silicon: Effect of thermal stresses. Journal of Applied Physics, 2013, 114, .	2.5	34
52	Direct visualization of magneticâ€fieldâ€induced magnetoelectric switching in multiferroic aurivillius phase thin films. Journal of the American Ceramic Society, 2017, 100, 975-987.	3.8	34
53	0–3 piezoelectric composites for large area hydrophones. Ferroelectrics, 1989, 93, 169-176.	0.6	33
54	Fabrication and modeling of high-frequency PZT composite thick film membrance resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 1255-1261.	3.0	32

#	Article	IF	CITATIONS
55	Direct atomic scale determination of magnetic ion partition in a room temperature multiferroic material. Scientific Reports, 2017, 7, 1737.	3.3	32
56	Pyroelectric ceramics and thin films for applications in uncooled infra-red sensor arrays. Physica Scripta, 2007, T129, 6-11.	2.5	31
57	Fabrication of Arrays of Lead Zirconate Titanate (PZT) Nanodots via Block Copolymer Self-Assembly. Chemistry of Materials, 2013, 25, 1458-1463.	6.7	31
58	Recent developments in ferroelectrics for infrared detectors. Physica Status Solidi A, 1980, 61, 73-80.	1.7	30
59	Ultrahigh resolution of lead zirconate titanate 30/70 domains as imaged by piezoforce microscopy. Nanotechnology, 2002, 13, 456-459.	2.6	30
60	Room temperature electromechanical and magnetic investigations of ferroelectric Aurivillius phase Bi5Ti3(FexMn1â^'x)O15 (x = 1 and 0.7) chemical solution deposited thin films. Journal of Applied Physics 2012, 112, .	, 2.5	30
61	Ferroelectrics, microsystems and nanotechnology. Ferroelectrics, 1999, 225, 179-192.	0.6	29
62	Pyroelectric Materials and Devices. , 2001, , 99-147.		29
63	Comparative measurements of piezoelectric coefficient of PZT films by berlincourt, interferometer, and vibrometer methods. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 2287-2293.	3.0	29
64	Piezoresponse force microscopy investigations of Aurivillius phase thin films. Journal of Applied Physics, 2010, 108, 042004.	2.5	29
65	Crystallographic and magnetic identification of secondary phase in orientated Bi5Fe0.5Co0.5Ti3O15 ceramics. Journal of Applied Physics, 2012, 112, 073919.	2.5	29
66	Surface Roughness Assisted Growth of Vertically Oriented Ferroelectric SbSI Nanorods. Chemistry of Materials, 2012, 24, 3279-3284.	6.7	28
67	Bismuth Self-Limiting Growth of Ultrathin BiFeO ₃ Films. Chemistry of Materials, 2015, 27, 6508-6515.	6.7	28
68	Growth and characterisation of lead zirconate titanate (30/70) on indium tin oxide coated glass for oxide ferroelectric-liquid crystal display application. Integrated Ferroelectrics, 2000, 29, 189-213.	0.7	26
69	The dielectric properties of NiBr and Fel boracite single crystals. Ferroelectrics, 1980, 27, 67-70.	0.6	25
70	TfP258. Physicochemical properties of SOL-GEL derived lead scandium tantalate Pb(Sc _{0.5} Ta _{0.5})O ₃ thin films. Ferroelectrics, 1992, 134, 343-348.	0.6	25
71	100 years of ferroelectricity—A celebration. APL Materials, 2021, 9, .	5.1	25
72	<title>Pyroelectric Ceramic Materials For Uncooled I.R. Detectors</title> . Proceedings of SPIE, 1983, , .	0.8	24

#	Article	IF	CITATIONS
73	Absence of Evidence ≠Evidence of Absence: Statistical Analysis of Inclusions in Multiferroic Thin Films. Scientific Reports, 2015, 4, 5712.	3.3	23
74	The electromechanical and SAW properties of proustite and pyrargyrite. Journal Physics D: Applied Physics, 1982, 15, 1289-1299.	2.8	21
75	Screen Printed PZT Thick Films Using Composite Film Technology. Integrated Ferroelectrics, 2003, 54, 651-658.	0.7	21
76	Direct and converse magnetoelectric effect at resonant frequency in laminar piezoelectric-magnetostrictive composite. Journal of Electroceramics, 2008, 20, 53-58.	2.0	21
77	Electrical conductivity in uranium doped, modified lead zirconate pyroelectric ceramics. Ferroelectrics, 1981, 37, 543-546.	0.6	19
78	Phase Diagram of the Bi4Ti3O12-BaTiO3-(Na1/2Bi1/2)TiO3 System. Journal of the American Ceramic Society, 2005, 88, 3147-3153.	3.8	19
79	Anomalous Motion of Charged Domain Walls and Associated Negative Capacitance in Copper–Chlorine Boracite. Advanced Materials, 2021, 33, e2008068.	21.0	19
80	Pyl11: Pyroelectric properties of thin film lead scandium tantalate. Ferroelectrics, 1992, 133, 35-40.	0.6	18
81	Screen Printed PZT Composite Thick Films. Integrated Ferroelectrics, 2004, 63, 89-92.	0.7	18
82	Atomic vapor deposition of bismuth titanate thin films. Journal of Applied Physics, 2013, 113, .	2.5	18
83	Tunable nanoscale structural disorder in Aurivillius phase, n = 3 Bi ₄ Ti ₃ O ₁₂ thin films and their role in the transformation to n = 4, Bi ₅ Ti ₃ FeO ₁₅ phase. Journal of Materials Chemistry C, 2015, 3, 5727-5732.	5.5	18
84	Pyroelectric and photovoltaic properties of Nb-doped PZT thin films. APL Materials, 2021, 9, .	5.1	18
85	Ferroelectric Behavior in Exfoliated 2D Aurivillius Oxide Flakes of Subâ€Unit Cell Thickness. Advanced Electronic Materials, 2020, 6, 1901264.	5.1	18
86	High dielectric constant ceramics in the PbSc0.5Ta0.5O3-PbZrO3 and PbSc0.5Ta0.5O3-PbTiO3 systems. Journal of Materials Science, 1993, 28, 1377-1384.	3.7	17
87	Preparation of Functionally Graded PZT Ceramics Using Tape Casting. Journal of Electroceramics, 2004, 13, 413-415.	2.0	17
88	Pyroelectric effect enhancement in laminate composites under short circuit condition. Journal of Applied Physics, 2009, 106, .	2.5	17
89	The electro-elastic and SAW properties of Sr0.5Ba0.5Nb2O6. Journal Physics D: Applied Physics, 1982, 15, 2469-2481.	2.8	16
90	A black platinum catalyst/pyroelectric gas sensor. Ferroelectrics, 1984, 54, 211-214.	0.6	16

#	Article	IF	Citations
91	Sol-gel PZT and Mn-doped PZT thin films for pyroelectric applications. Integrated Ferroelectrics, 2001, 41, 43-50.	0.7	16
92	Transformation dependence of lead zirconate titanate (PZT) as shown by piezoafm surface mapping of SOL-GEL produced pzt on various substrates Integrated Ferroelectrics, 2001, 38, 39-47.	0.7	16
93	Interesting Evidence for Templateâ€Induced Ferroelectric Behavior in Ultraâ€Thin Titanium Dioxide Films Grown on (110) Neodymium Gallium Oxide Substrates. Advanced Functional Materials, 2014, 24, 2844-2851.	14.9	16
94	The dielectric and piezoelectric properties of vinylidene fluoride-trifluoroethylene copolymers. Ferroelectrics, 1987, 76, 383-391.	0.6	15
95	Piezoelectric PZT films for MEMS and their characterization by interferometry. Journal of Electroceramics, 2006, 17, 549-556.	2.0	15
96	Ferroelectric Thin Films for Capacitor and Sensor Applications. , 1995, , 383-397.		15
97	Improvements to pyroelectric ceramics via strontium doping of the lead zirconate-lead iron niobate-lead titanate system. Ferroelectrics, 1991, 118, 93-101.	0.6	14
98	Ferroelectric materials for uncooled thermal imaging. Proceedings of SPIE, 1993, , .	0.8	14
99	Coupling of the remanent polarisation in thin film oxide ferroelectrics with nematic liquid crystals. Journal of Materials Chemistry, 1999, 9, 375-380.	6.7	14
100	The growth and piezoelectric properties of Te2V2O9(for surface acoustic wave device application). Journal Physics D: Applied Physics, 1980, 13, 2143-2149.	2.8	13
101	Low Microphony Pyroelectric Arrays. , 1986, 0588, 44.		13
102	Temperature-dependence of the lattice parameters of nickel-bromine boracite between 25 and 200 \hat{A}° C. Phase Transitions, 1981, 2, 85-101.	1.3	12
103	0-3 composite sensitivity. Ferroelectrics, 1990, 109, 217-222.	0.6	12
104	Preparation and properties of PbTiO/sub 3/ and Pb(Sc/sub 0.5/Ta/sub 0.5/)O/sub 3/ thin films by sol-gel processing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1991, 38, 672-676.	3.0	12
105	Ferroelectric ceramics and thin films for pyroelectric applications. Integrated Ferroelectrics, 1993, 3, 301-308.	0.7	12
106	Sputtered lead scandium tantalate thin films: crystallization behaviour during post-deposition annealing. Journal Physics D: Applied Physics, 2001, 34, 3121-3129.	2.8	12
107	Mechanical and electromechanical properties of PZT sol-gel thin films measured by nanoindentation. Integrated Ferroelectrics, 2001, 41, 53-62.	0.7	12
108	Quantitative Highâ€Dynamicâ€Range Electron Diffraction of Polar Nanodomains in Pb ₂ ScTaO ₆ . Advanced Materials, 2019, 31, e1806498.	21.0	12

#	Article	IF	CITATIONS
109	Nucleation control during the growth of boracite single crystals. Ferroelectrics, 1980, 28, 329-332.	0.6	11
110	An examination of thin film lead scandium tantalum oxide (PST) using piezoAFM. Journal of Materials Science Letters, 2001, 20, 179-181.	0.5	11
111	Piezo- and pyroelectric properties of lead scandium tantalate thin films. Integrated Ferroelectrics, 2001, 35, 209-218.	0.7	11
112	The Effect of Repeated Sol Infiltrations on the Microstructure and Electrical Properties of PZT Composite Sol-Gel Films. Ferroelectrics, 2002, 267, 373-378.	0.6	11
113	A double-beam common path laser interferometer for the measurement of electric field-induced strains of piezoelectric thin films. Review of Scientific Instruments, 2005, 76, 123906.	1.3	11
114	Experimental, analytical, and finite element analyses of nanoindentation of multilayer PZT/Pt/SiO2 thin film systems on silicon wafers. Journal of Materials Research, 2006, 21, 409-419.	2.6	11
115	Pyroelectric Properties of Lead Based Ferroelectric thin Films. Materials Research Society Symposia Proceedings, 1993, 310, 53.	0.1	10
116	THE ELECTROMECHANICAL PROPERTIES OF HIGHLY [100] ORIENTED [Pb(Zr0.52Ti0.48)O3, PZT] THIN FILMS. Integrated Ferroelectrics, 2006, 80, 77-85.	0.7	10
117	Sputtered lead scandium tantalate thin films: a microstructural study. Journal of Materials Science, 1998, 33, 363-370.	3.7	9
118	Effect of sol infiltrations on electrical properties of PZT. Advances in Applied Ceramics, 2002, 101, 146-148.	0.4	9
119	Flextensional ultrasonic motor using the contour mode of a square piezoelectric plate. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 929-936.	3.0	9
120	Flextensional ultrasonic piezoelectric micro-motor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 2357-2366.	3.0	9
121	SOL-GEL FABRICATION OF PZT THICK FILMS FOR MEMS. Integrated Ferroelectrics, 2007, 88, 93-102.	0.7	9
122	Ferroelectric Materials., 2006,, 597-623.		9
123	Characterisation of Pyroelectric Materials. Springer Series in Measurement Science and Technology, 2014, , 65-86.	0.8	9
124	Electrophoretic deposition of ferroelectric thin films. Ferroelectrics, 1996, 187, 57-73.	0.6	8
125	FIB Milled PZT Nanocapacitors Tested Using PFM. Integrated Ferroelectrics, 2004, 61, 223-230.	0.7	8
126	The investigation of key processing parameters in fabrication of Pb(Zr x Tilâ^'x)O3 thick films for MEMS applications. Journal of Electroceramics, 2007, 19, 295-301.	2.0	8

#	Article	IF	CITATIONS
127	Ferroelectric Materials. Springer Handbooks, 2017, , 1-1.	0.6	7
128	Piezoelectric and Pyroelectric Materials and Their Applications. , 1991, , 283-290.		6
129	DiC17: High dielectric constant ceramics in the PbSc _{0.5} Ta _{0.5} O ₃ -PbZrO ₃ system. Ferroelectrics, 1992, 133, 159-161.	0.6	6
130	Cryogenic electrical studies of manganese-doped lead scandium tantalate thin films: Phase transitions or domain wall dynamics?. AIP Conference Proceedings, 2001, , .	0.4	6
131	On the phase transformation kinetics in lead scandium tantalate thin films. Journal Physics D: Applied Physics, 2003, 36, 3039-3046.	2.8	6
132	Orientation Control of Low Temperature Deposited Sol-Gel PZT52/48 Films. Ferroelectrics, 2005, 318, 41-48.	0.6	6
133	Comment on "Interesting Evidence for Templateâ€Induced Ferroelectric Behavior in Ultraâ€Thin Titanium Dioxide Films Grown on (110) Neodymium Gallium Oxide Substrates― Advanced Functional Materials, 2016, 26, 642-646.	14.9	6
134	Quasi-indirect measurement of electrocaloric temperature change in PbSc0.5Ta0.5O3 via comparison of adiabatic and isothermal electrical polarization data. APL Materials, 2021, 9, .	5.1	6
135	Growth and characterization of PbZr _x Ti _{1–x} O ₃ single crystals. Ferroelectrics, 1976, 13, 497-500.	0.6	5
136	The dependence of microstructure and superconducting phase formation on post-sintering cool-rate of BiCaSrCu2Oxceramic. Superconductor Science and Technology, 1989, 2, 132-139.	3.5	5
137	Thin ferroelectric films for thermal detector applications. Integrated Ferroelectrics, 1992, 1, 363-378.	0.7	5
138	Low temperature formation of sol-gel derived ferroelectric lead zirconate titanate (Pb(Zr $<$ sub $>$ x $<$ /sub $>$ 1 $<$ x $<$ bub $>$ 1-x $<$ sub $>$ 0 $<$ sub $>$ 3 $<$ /sub $>$, x = 0.3) thin films. European Physical Journal Special Topics, 1998, 08, Pr9-79-Pr9-82.	0.2	5
139	Local Freedericksz transitions at a nematic liquid crystal/thin film oxide ferroelectric interface. Liquid Crystals, 1999, 26, 601-604.	2.2	5
140	High Frequency PZT Composite Thick Film Resonators. Integrated Ferroelectrics, 2004, 63, 27-33.	0.7	5
141	Pyroelectric Crystals, Ceramics, and Thin Films for IR Sensors. , 2021, , 139-150.		5
142	Monoclinic domain populations and enhancement of piezoelectric properties in a PZT single crystal at the morphotropic phase boundary. Physical Review B, 2022, 105, .	3.2	5
143	Effect of alloying platinum bottom electrode with silver: In relation to CSD processing of PZT thin films. Integrated Ferroelectrics, 2000, 29, 251-271.	0.7	4
144	Thick PZT Micro-Features Obtained by Direct Patterning of Photosensitive Precursor Solution. Integrated Ferroelectrics, 2003, 54, 585-593.	0.7	4

#	Article	IF	CITATIONS
145	Sol-Gel Derived Lead Zirconate Titanate Thick Films and Their Improved Pyroelectric Properties. Integrated Ferroelectrics, 2004, 64, 207-216.	0.7	4
146	STRESS-INDUCED PHASE FORMATION OF PZT 52/48 THIN FILMS. Integrated Ferroelectrics, 2007, 88, 85-92.	0.7	4
147	Single point diamond turning of ferroelectric materials. Ferroelectrics, 1999, 228, 229-239.	0.6	3
148	Growth and characterisation of lead zirconate titanate (30/70) thin films using TiO2seeding for oxide ferroelectric-liquid crystal display application. Ferroelectrics, 2001, 256, 159-174.	0.6	3
149	Growth Stages of Sol-Gel Derived PZT(30/70) on Pt/Ti/SiO 2 as Shown by SPM (PFM and Topography). Integrated Ferroelectrics, 2002, 46, 87-94.	0.7	3
150	Comparative microstructure and electrical property studies of lead scandium tantalate thin films as prepared by LDCVD, solÂgel and sputtering techniques. Journal Physics D: Applied Physics, 2003, 36, 270-279.	2.8	3
151	Development Aspects of an Integrated Pyroelectric Array Incorporating a Thin PZT Film and Radiation Collectors. Integrated Ferroelectrics, 2004, 63, 93-97.	0.7	3
152	Influence of MgO on the Structural and Electrical Properties of Bi4Ti3O12. Integrated Ferroelectrics, 2004, 62, 193-197.	0.7	3
153	Fabrication of PZT Composite Thick Films for High Frequency Membrane Resonators. Journal of Electroceramics, 2004, 13, 267-270.	2.0	3
154	Pyroelectric Arrays Using Ceramics and Thin Films Integrated Radiation Collectors: Design Fabrication and Testing. Ferroelectrics, 2005, 318, 11-22.	0.6	3
155	Recent Advances in Pyroelectric Ceramics and Thin Films for Applications in Uncooled Infra-Red Sensor Arrays. Advances in Science and Technology, 2006, 45, 2503.	0.2	3
156	Order–disorder, ferroelasticity and mobility of domain walls in multiferroic Cu–Cl boracite. Journal of Physics Condensed Matter, 2021, 33, 095402.	1.8	3
157	Electronic ceramics. Physics in Technology, 1988, 19, 58-66.	0.2	2
158	Low temperature sol gel deposition of PST (Pb(Sc0.5Ta0.5)O3) thin films. Ferroelectrics, 1999, 228, 53-60.	0.6	2
159	The influence of particle size of acetic acid modified PZT precursor solution on the crystallization and electrical properties of sol-gel processed PZT thin films. Integrated Ferroelectrics, 1999, 23, 215-228.	0.7	2
160	Travelling wave ultrasonic motor using the B/sub 08/ flexural mode of a circular membrane. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2001, 48, 683-690.	3.0	2
161	A Model of Phase Transition Kinetics in Lead Scandium Tantalate Thin Films. Integrated Ferroelectrics, 2003, 58, 1347-1357.	0.7	2
162	Kinetics of Phase Transformations in Lead Scandium Tantalate Thin Films. Integrated Ferroelectrics, 2004, 60, 87-94.	0.7	2

#	Article	IF	Citations
163	An Introduction to Ferroelectric Ceramics and their Applications. , 1991, , 223-254.		2
164	Passive Properties of 3-1-1 Piezoelectric Composites. Japanese Journal of Applied Physics, 1985, 24, 448.	1.5	2
165	High Frequency Thin Film Acoustic Ferroelectric Resonators. Materials Research Society Symposia Proceedings, 2000, 655, 171.	0.1	1
166	Effects of Pulsed Electric Fields on a Nematic Device with a Ferroelectric Ceramic Substrate. Molecular Crystals and Liquid Crystals, 2001, 368, 9-15.	0.3	1
167	Oxide ferroelectric thin film/nematic liquid crystal devices. Integrated Ferroelectrics, 2001, 41, 3-16.	0.7	1
168	Improved Ferroelectric Properties in Mn-Doped PZT Thin Films. Integrated Ferroelectrics, 2003, 52, 73-84.	0.7	1
169	Experimental Design and Construction of a Flextensional Ultrasonic Piezoelectric Micro-Motor. Integrated Ferroelectrics, 2004, 63, 165-169.	0.7	1
170	Investigating Ferroelectric Domain and Domain Wall Dynamics at Atomic Resolution by TEM/STEM <i>in situ</i> i> Heating and Biasing. Microscopy and Microanalysis, 2019, 25, 1882-1883.	0.4	1
171	Preparation of electroceramics from metal organic precursors. Ferroelectrics, 1989, 94, 255-259.	0.6	O
172	High moisture resistant electroactive composites. Ferroelectrics, 1992, 127, 197-202.	0.6	0
173	Kinetics of lead zirconate titanate sol aging. Integrated Ferroelectrics, 2001, 36, 153-161.	0.7	O
174	Soft lithographic patterning of oxide thin films. , 2003, , .		0
175	A New Approach to Interconversion of Thermal and Electrical Energy. , 2006, , .		O
176	Pyroelectric Materials and Devices. The Electrical Engineering Handbook, 1997, , .	0.2	0
177	Low temperature sol gel synthesis of PST thin films. European Physical Journal Special Topics, 1998, 08, Pr9-57-Pr9-60.	0.2	0
178	Influence of charged walls and defects on DC resistivity and dielectric relaxations in Cu-Cl boracite. Applied Physics Letters, 2021, 119, 202904.	3.3	0