Sacco C De Vries

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2133566/publications.pdf

Version: 2024-02-01

117 papers 11,631 citations

25034 57 h-index 28297 105 g-index

118 all docs

 $\frac{118}{\text{docs citations}}$

118 times ranked

10155 citing authors

#	Article	IF	CITATIONS
1	Suspensor-derived somatic embryogenesis in Arabidopsis. Development (Cambridge), 2020, 147, .	2.5	8
2	POLAR-guided signalling complex assembly and localization drive asymmetric cell division. Nature, 2018, 563, 574-578.	27.8	167
3	Nonselective Chemical Inhibition of Sec7 Domain-Containing ARF GTPase Exchange Factors. Plant Cell, 2018, 30, 2573-2593.	6.6	16
4	The Arabidopsis Leucine-Rich Repeat Receptor Kinase BIR3 Negatively Regulates BAK1 Receptor Complex Formation and Stabilizes BAK1. Plant Cell, 2017, 29, 2285-2303.	6.6	94
5	Plant embryogenesis. Current Biology, 2017, 27, R870-R873.	3.9	32
6	Identification of Brassinosteroid Signaling Complexes by Coimmunoprecipitation and Mass Spectrometry. Methods in Molecular Biology, 2017, 1564, 145-154.	0.9	2
7	Visualization of BRI1 and SERK3/BAK1 Nanoclusters in Arabidopsis Roots. PLoS ONE, 2017, 12, e0169905.	2.5	33
8	Transcriptional Analysis of serk1 and serk3 Coreceptor Mutants. Plant Physiology, 2016, 172, 2516-2529.	4.8	2
9	A Comparison of In Vitro and In Vivo Asexual Embryogenesis. Methods in Molecular Biology, 2016, 1359, 3-23.	0.9	14
10	Precision positioning with peptides. Nature, 2015, 522, 424-425.	27.8	0
11	Plant receptor complexes. Science Signaling, 2015, 8, fs15.	3.6	2
12	On the Origin of SERKs: Bioinformatics Analysis of the Somatic Embryogenesis Receptor Kinases. Molecular Plant, 2015, 8, 762-782.	8.3	74
13	Structural Basis for DNA Binding Specificity by the Auxin-Dependent ARF Transcription Factors. Cell, 2014, 156, 577-589.	28.9	348
14	The Leucine-Rich Repeat Receptor Kinase BIR2 Is a Negative Regulator of BAK1 in Plant Immunity. Current Biology, 2014, 24, 134-143.	3.9	219
15	Proteomics Analysis of the Zebrafish Skeletal Extracellular Matrix. PLoS ONE, 2014, 9, e90568.	2.5	50
16	A Mathematical Model for the Coreceptors SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE3 in BRASSINOSTEROID INSENSITIVE1-Mediated Signaling Â. Plant Physiology, 2013, 163, 1472-1481.	4.8	13
17	Computational modelling of the <scp>BRI1</scp> receptor system. Plant, Cell and Environment, 2013, 36, 1728-1737.	5.7	6
18	Visualization of BRI1 and BAK1(SERK3) Membrane Receptor Heterooligomers during Brassinosteroid Signaling Â. Plant Physiology, 2013, 162, 1911-1925.	4.8	104

#	Article	IF	CITATIONS
19	The BRASSINOSTEROID INSENSITIVE1–LIKE3 Signalosome Complex Regulates <i>Arabidopsis</i> Root Development Â. Plant Cell, 2013, 25, 3377-3388.	6.6	94
20	Symposia on Plant (Protein) Phosphorylation. Frontiers in Plant Science, 2012, 3, 201.	3.6	1
21	Tackling Drought Stress: RECEPTOR-LIKE KINASES Present New Approaches. Plant Cell, 2012, 24, 2262-2278.	6.6	155
22	Brassinosteroids inhibit pathogen-associated molecular pattern–triggered immune signaling independent of the receptor kinase BAK1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 303-308.	7.1	303
23	SPEECHLESS integrates brassinosteroid and stomata signalling pathways. Nature Cell Biology, 2012, 14, 548-554.	10.3	277
24	Proteomics-based identification of low-abundance signaling and regulatory protein complexes in native plant tissues. Nature Protocols, 2012, 7, 2144-2158.	12.0	90
25	A Mathematical Model for BRASSINOSTEROID INSENSITIVE1-Mediated Signaling in Root Growth and Hypocotyl Elongation Â. Plant Physiology, 2012, 160, 523-532.	4.8	35
26	The Arabidopsis thaliana SERK1 Kinase Domain Spontaneously Refolds to an Active State In Vitro. PLoS ONE, 2012, 7, e50907.	2.5	9
27	The Host Defense Proteome of Human and Bovine Milk. PLoS ONE, 2011, 6, e19433.	2.5	210
28	Cell Plate Restricted Association of DRP1A and PIN Proteins Is Required for Cell Polarity Establishment in Arabidopsis. Current Biology, 2011, 21, 1055-1060.	3.9	89
29	Quantification of the Brassinosteroid Insensitive1 Receptor in Planta Â. Plant Physiology, 2011, 156, 1691-1700.	4.8	33
30	Fluorescence Correlation Spectroscopy and Fluorescence Recovery After Photobleaching to Study Receptor Kinase Mobility In Planta. Methods in Molecular Biology, 2011, 779, 225-242.	0.9	6
31	The <i>Arabidopsis</i> Leucine-Rich Repeat Receptor–Like Kinases BAK1/SERK3 and BKK1/SERK4 Are Required for Innate Immunity to Hemibiotrophic and Biotrophic Pathogens. Plant Cell, 2011, 23, 2440-2455.	6.6	578
32	Proteomics insights into plant signaling and development. Proteomics, 2011, 11, 744-755.	2.2	37
33	Profiling of promoter occupancy by PPARÎ \pm in human hepatoma cells via ChIP-chip analysis. Nucleic Acids Research, 2010, 38, 2839-2850.	14.5	112
34	Endocytic and Secretory Traffic in <i>Arabidopsis</i> Merge in the Trans-Golgi Network/Early Endosome, an Independent and Highly Dynamic Organelle. Plant Cell, 2010, 22, 1344-1357.	6.6	435
35	Identification of <i>in vitro</i> phosphorylation sites in the <i>Arabidopsis thaliana</i> somatic embryogenesis receptorâ€ike kinases. Proteomics, 2009, 9, 368-379.	2.2	57
36	One for all: the receptor-associated kinase BAK1. Trends in Plant Science, 2009, 14, 535-541.	8.8	281

3

#	Article	IF	Citations
37	AtSERK1 expression precedes and coincides with early somatic embryogenesis in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2008, 46, 709-714.	5.8	36
38	Fluorescence Fluctuation Analysis of Arabidopsis thaliana Somatic Embryogenesis Receptor-Like Kinase and Brassinosteroid Insensitive 1 Receptor Oligomerization. Biophysical Journal, 2008, 94, 1052-1062.	0.5	77
39	Plasma Membrane Receptor Complexes. Plant Physiology, 2008, 147, 1560-1564.	4.8	31
40	A Proteomics Approach to Membrane Trafficking. Plant Physiology, 2008, 147, 1584-1589.	4.8	17
41	Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE Proteins Serve Brassinosteroid-Dependent and -Independent Signaling Pathways Â. Plant Physiology, 2008, 148, 611-619.	4.8	175
42	Membrane Trafficking: Intracellular Highways and Country Roads. Plant Physiology, 2008, 147, 1451-1453.	4.8	21
43	Diploid apomicts of the <i>Boechera holboellii</i> complex display large-scale chromosome substitutions and aberrant chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14026-14031.	7.1	136
44	In Vivo Hexamerization and Characterization of the Arabidopsis AAA ATPase CDC48A Complex Using Fol^rster Resonance Energy Transfer-Fluorescence Lifetime Imaging Microscopy and Fluorescence Correlation Spectroscopy. Plant Physiology, 2007, 145, 339-350.	4.8	47
45	The SERK1 gene is expressed in procambium and immature vascular cells. Journal of Experimental Botany, 2007, 58, 2887-2896.	4.8	48
46	14-3-3 Proteins in Plant Brassinosteroid Signaling. Developmental Cell, 2007, 13, 162-164.	7.0	15
47	The BRI1-Associated Kinase 1, BAK1, Has a Brassinolide-Independent Role in Plant Cell-Death Control. Current Biology, 2007, 17, 1116-1122.	3.9	356
48	The Arabidopsis thaliana AAA protein CDC48A interacts in vivo with the somatic embryogenesis receptor-like kinase 1 receptor at the plasma membrane. Journal of Structural Biology, 2006, 156, 62-71.	2.8	44
49	Carrot arabinogalactan proteins are interlinked with pectins. Physiologia Plantarum, 2006, 128, 18-28.	5.2	78
50	The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 Protein Complex Includes BRASSINOSTEROID-INSENSITIVE1. Plant Cell, 2006, 18, 626-638.	6.6	249
51	Use of the SSLP-based method for detection of rare apomictic events in a sexual AtSERK1 transgenic Arabidopsis population. Sexual Plant Reproduction, 2006, 19, 73-82.	2.2	3
52	Molecular cytogenetics and DNA sequence analysis of an apomixis-linked BAC in Paspalum simplex reveal a non pericentromere location and partial microcolinearity with rice. Theoretical and Applied Genetics, 2006, 112, 1179-1191.	3.6	90
53	In vivo imaging of MADS-box transcription factor interactions. Journal of Experimental Botany, 2006, 57, 33-42.	4.8	63
54	Advances in Understanding Brassinosteroid Signaling. Science's STKE: Signal Transduction Knowledge Environment, 2006, 2006, pe36-pe36.	3.9	15

#	Article	IF	CITATIONS
55	The Arabidopsis SERK1 protein interacts with the AAA-ATPase AtCDC48, the 14-3-3 protein GF14λ and the PP2C phosphatase KAPP. Planta, 2005, 221, 394-405.	3.2	61
56	The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 Control Male Sporogenesis. Plant Cell, 2005, 17, 3337-3349.	6.6	289
57	Heterodimerization and Endocytosis of Arabidopsis Brassinosteroid Receptors BRI1 and AtSERK3 (BAK1). Plant Cell, 2004, 16, 3216-3229.	6.6	444
58	Ectopic expression of LLAG1, an AGAMOUS homologue from lily (Lilium longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis. Journal of Experimental Botany, 2004, 55, 1391-1399.	4.8	47
59	PICKLE Acts throughout the Plant to Repress Expression of Embryonic Traits and May Play a Role in Gibberellin-Dependent Responses. Plant Physiology, 2004, 134, 995-1005.	4.8	148
60	Different arabinogalactan proteins are present in carrot (Daucus carota) cell culture medium and in seeds. Physiologia Plantarum, 2004, 122, 181-189.	5 . 2	17
61	The PAS fold. FEBS Journal, 2004, 271, 1198-1208.	0.2	151
62	Sexual and Apomictic Reproduction in Hieracium subgenus Pilosella Are Closely Interrelated Developmental Pathways. Plant Cell, 2003, 15, 1524-1537.	6.6	126
63	The CUP-SHAPED COTYLEDON3 Gene Is Required for Boundary and Shoot Meristem Formation in Arabidopsis. Plant Cell, 2003, 15, 1563-1577.	6.6	429
64	How Accurate and Safe Is the Diagnosis of Hazelnut Allergy by Means of Commercial Skin Prick Test Reagents?. International Archives of Allergy and Immunology, 2003, 132, 132-140.	2.1	72
65	The Arabidopsis kinase-associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1. Genes and Development, 2002, 16, 1707-1720.	5.9	182
66	Somatic embryogenesis from Arabidopsis shoot apical meristem mutants. Planta, 2002, 214, 829-836.	3.2	68
67	A relationship between seed development, Arabinogalactan-proteins (AGPs) and the AGP mediated promotion of somatic embryogenesis. Physiologia Plantarum, 2002, 114, 637-644.	5.2	83
68	Subcellular Localization and Oligomerization of the Arabidopsis thaliana Somatic Embryogenesis Receptor Kinase 1 Protein. Journal of Molecular Biology, 2001, 309, 641-655.	4.2	117
69	Expression of the Daucus carota somatic embryogenesis receptor kinase (DcSERK) protein in insect cells. Biochimie, 2001, 83, 415-421.	2.6	19
70	The Arabidopsis $<$ i>Somatic Embryogenesis Receptor Kinase $1<$ i>Gene Is Expressed in Developing Ovules and Embryos and Enhances Embryogenic Competence in Culture. Plant Physiology, 2001, 127, 803-816.	4.8	604
71	N-Acetylglucosamine and Glucosamine-Containing Arabinogalactan Proteins Control Somatic Embryogenesis. Plant Physiology, 2001, 125, 1880-1890.	4.8	223
72	The Arabidopsis Somatic Embryogenesis Receptor Kinase 1 Gene Is Expressed in Developing Ovules and Embryos and Enhances Embryogenic Competence in Culture. Plant Physiology, 2001, 127, 803-816.	4.8	54

#	Article	IF	CITATIONS
73	Expression pattern of the Arabidopsis thaliana AtEP3 / AtchitIV endochitinase gene. Planta, 2001, 212, 556-567.	3.2	93
74	Role of Threonines in the Arabidopsis thaliana Somatic Embryogenesis Receptor Kinase 1 Activation Loop in Phosphorylation. Journal of Biological Chemistry, 2001, 276, 41263-41269.	3.4	107
75	Lipid Transfer Protein: A Pan-Allergen in Plant-Derived Foods That Is Highly Resistant to Pepsin Digestion. International Archives of Allergy and Immunology, 2001, 124, 67-69.	2.1	73
76	Parental Contribution to Plant Embryos. Plant Cell, 2000, 12, 461-463.	6.6	8
77	Parental Contribution to Plant Embryos. Plant Cell, 2000, 12, 461.	6.6	0
78	Lipid Transfer Protein: A Pan-Allergen in Plant-Derived Foods That Is Highly Resistant to Pepsin Digestion. International Archives of Allergy and Immunology, 2000, 122, 20-32.	2.1	307
79	Signalling in plant embryos during the establishment of the polar axis. Seminars in Cell and Developmental Biology, 1999, 10, 157-164.	5.0	34
80	Making embryos in plants. Trends in Plant Science, 1998, 3, 451-452.	8.8	14
81	Expression Pattern of the Carrot EP3Endochitinase Genes in Suspension Cultures and in Developing Seeds1. Plant Physiology, 1998, 117, 43-53.	4.8	113
82	Somatic Embryogenesis in Arabidopsis thaliana Is Facilitated by Mutations in Genes Repressing Meristematic Cell Divisions. Genetics, 1998, 149, 549-563.	2.9	158
83	Plant Embryogenesis. Critical Reviews in Plant Sciences, 1997, 16, 535-576.	5.7	159
84	Promotive and inhibitory effects of diverse arabinogalactan proteins on Daucus carota L. somatic embryogenesis. Planta, 1997, 203, 188-195.	3.2	81
85	The secretory nature of the lesion of carrot cell variant ts11, rescuable by endochitinase. Planta, 1997, 203, 381-389.	3.2	21
86	AtLTP1 luciferase expression during carrot somatic embryogenesis. Plant Journal, 1997, 12, 1213-1221.	5.7	38
87	Plant Embryogenesis. Critical Reviews in Plant Sciences, 1997, 16, 535-576.	5.7	18
88	Characterzation of chitinases able to rescue somatic embryos of the temperature-sensitive carrot variantts11. Plant Molecular Biology, 1996, 31, 631-645.	3.9	70
89	Expression of the JIM8 cell wall epitope in carrot somatic embryogenesis. Planta, 1996, 200, 167-173.	3.2	36
90	Pattern Formation in the Arabidopsis Embryo Revealed by Position-Specific Lipid Transfer Protein Gene Expression. Plant Cell, 1996, 8, 783.	6.6	28

#	Article	IF	Citations
91	Transient reduction in secreted 32 kD chitinase prevents somatic embryogenesis in the carrot (Daucus) Tj ETQq1	1,0,78431 2.1	4 _g rgBT /Ove
92	Petunia hybrida homologues of shaggy/zeste-white 3 expressed in female and male reproductive organs. Plant Journal, 1995, 7, 897-911.	5.7	30
93	Purification, immunological characterization and cDNA cloning of a 47 kDa glycoprotein secreted by carrot suspension cells. Plant Molecular Biology, 1995, 27, 901-910.	3.9	14
94	Signal molecules involved in plant embryogenesis. Plant Molecular Biology, 1994, 26, 1305-1313.	3.9	49
95	Description of somatic-embryo-forming single cells in carrot suspension cultures employing video cell tracking. Planta, 1994, 194, 565-572.	3.2	116
96	The carrot secreted glycoprotein gene EP1 is expressed in the epidermis and has sequence homology to Brassica S-locus glycoproteins. Plant Journal, 1993, 4, 855-862.	5.7	36
97	Early events in higher-plant embryogenesis. Plant Molecular Biology, 1993, 22, 367-377.	3.9	139
98	Characterization of the non-specific lipid transfer protein EP2 from carrot (Daucus carota L.). Molecular and Cellular Biochemistry, 1993, 123, 159-166.	3.1	52
99	Isolation of genes specifically expressed in <i>Petunia hybrida</i> ovules and isolated embryo sacs. Acta Botanica Gallica, 1993, 140, 717-717.	0.9	0
100	Rhizobium Lipooligosaccharides Rescue a Carrot Somatic Embryo Mutant. Plant Cell, 1993, 5, 615.	6.6	58
101	A Carrot Somatic Embryo Mutant Is Rescued by Chitinase. Plant Cell, 1992, 4, 425.	6.6	59
102	Cell-Specific Expression of the Carrot EP2 Lipid Transfer Protein Gene. Plant Cell, 1991, 3, 907.	6.6	77
103	Tunicamycin-inhibited carrot somatic embryogenesis can be restored by secreted cationic peroxidase isoenzymes. Planta, 1991, 184, 478-486.	3.2	128
104	Heterogeneity and Cell Type-Specific Localization of a Cell Wall Glycoprotein from Carrot Suspension Cells. Plant Physiology, 1991, 96, 705-712.	4.8	45
105	Calcium increases the yield of somatic embryos in carrot embryogenic suspension cultures. Plant Cell Reports, 1990, 9, 221-223.	5.6	68
106	Changes in the tissue-specific prevalence of translatable mRNAs in transgenic tobacco shoots containing the T-DNA cytokinin gene. Plant Molecular Biology, 1988, 11, 625-631.	3.9	11
107	Gene-expression programs in embryogenic and non-embryogenic carrot cultures. Planta, 1988, 176, 205-211.	3.2	114
108	Acquisition of embryogenic potential in carrot cell-suspension cultures. Planta, 1988, 176, 196-204.	3.2	207

#	Article	IF	CITATIONS
109	Substrate Utilization by Suspension Cultures and Somatic Embryos of Daucus carota L. Measured by 13C NMR. Plant Physiology, 1988, 88, 1332-1337.	4.8	25
110	Nodulin gene expression during soybean (Glycine max) nodule development. Plant Molecular Biology, 1987, 8, 395-403.	3.9	34
111	A shoot-specific mRNA from pea: nucleotide sequence and regulation as compared to light-induced mRNAs. Plant Molecular Biology, 1985, 4, 95-102.	3.9	17
112	Molecular cloning of pea mRNAs encoding a shoot-specific polypeptide and light-induced polypeptides. Plant Molecular Biology, 1983, 2, 295-303.	3.9	17
113	Sequence diversity of polysomal mRNAs in roots and shoots of etiolated and greened pea seedlings. Planta, 1983, 158, 42-50.	3.2	14
114	Cloning and expression of the Escherichia coli recA gene in Bacillus subtilis. Gene, 1983, 25, 301-308.	2.2	58
115	Polarized outgrowth of hyphae by constant electrical fields during reversion of Schizophyllum commune protoplasts. Experimental Mycology, 1982, 6, 95-98.	1.6	16
116	Diversity of abundant mRNA sequences and patterns of protein synthesis in etiolated and greened pea seedlings. Planta, 1982, 156, 129-135.	3.2	136
117	Competition between the facultatively chemolithotrophic Thiobacillus A2, an obligately chemolithotrophic Thiobacillus and a heterotrophic spirillum for inorganic and organic substrates. Archives of Microbiology, 1979, 121, 241-249.	2.2	95