Margherita Silvetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/213350/publications.pdf Version: 2024-02-01

Municipal solid wastes as a resource for environmental recovery: Impact of water treatment residuals and compost on the microbial and biochemical features of As and trace metal-polluted soils. 6.0 Ecotoxicology and Environmental Safety, 2019, 174, 445-454.	39
² Municipal solid waste compost as a novel sorbent for antimony(V): adsorption and release trials at acidic pH. Environmental Science and Pollution Research, 2018, 25, 5603-5615. 5.3	33
³ Mutual effect of Phragmites australis, Arundo donax and immobilization agents on arsenic and trace 5.1 metals phytostabilization in polluted soils. Geoderma, 2018, 314, 63-72.	37
4Interaction of the water soluble fraction of MSW-composts with Pb(II) and Cu(II) ions. Journal of Environmental Management, 2017, 192, 39-47.7.8	9
5 Use of municipal solid wastes for chemical and microbiological recovery of soils contaminated with 8.8 metal(loid)s. Soil Biology and Biochemistry, 2017, 111, 25-35.	47
6 Sorption of Pb, Cu, Cd, and Zn by Municipal Solid Waste Composts: Metal Retention and Desorption 1.1 Mechanisms. Clean - Soil, Air, Water, 2017, 45, .	13
 Influence of lead in the sorption of arsenate by municipal solid waste composts: metal(loid) retention, desorption and phytotoxicity. Bioresource Technology, 2017, 225, 90-98. 	25
8 Influence of iron-rich water treatment residues and compost on the mobility of metal(loid)s in mine 5.1 soils. Geoderma, 2016, 283, 1-9.	31
 Sorption of Cadmium(II) and Zinc(II) from Aqueous Solution by Water Treatment Residuals at Different pH Values. Water, Air, and Soil Pollution, 2015, 226, 1. 	18
10Copper(II) and lead(II) removal from aqueous solution by water treatment residues. Journal of Hazardous Materials, 2015, 283, 140-147.12.4	83
Water treatment residues as accumulators of oxoanions in soil. Sorption of arsenate and phosphate anions from an aqueous solution. Journal of Hazardous Materials, 2014, 264, 144-152.	44
¹² Stabilising metal(loid)s in soil with iron and aluminium-based products: Microbial, biochemical and plant growth impact. Journal of Environmental Management, 2014, 139, 146-153. 7.8	60
Leachability, bioaccessibility and plant availability of trace elements in contaminated soils treated with industrial by-products and subjected to oxidative/reductive conditions. Geoderma, 2014, 214-215, 5.1 204-212.	41
Arsenic Mobilization by Citrate and Malate from a Red Mud-Treated Contaminated Soil. Journal of Environmental Quality, 2013, 42, 774-781.	19
 Study of the Interaction Mechanism in the Biosorption of Copper(II) lons onto <i>Posidonia</i> oceanica and Peat. Clean - Soil, Air, Water, 2012, 40, 428-437. 	26
16X-ray Diffraction and Thermal Analysis of Bauxite Ore-Processing Waste (Red Mud) Exchanged with Arsenate and Phosphate. Clays and Clay Minerals, 2011, 59, 189-199.1.3	12
Long-term influence of red mud on As mobility and soil physico-chemical and microbial parameters in a polluted sub-acidic soil. Journal of Hazardous Materials, 2011, 185, 1241-1248.	77

18 Study of sorption processes and FT-IR analysis of arsenate sorbed onto red muds (a bauxite ore) Tj ETQq0 0 0 rgBT |Overlock 10 Tf 50 62

#	Article	IF	CITATIONS
19	Influence of the pH on the accumulation of phosphate by red mud (a bauxite ore processing waste). Journal of Hazardous Materials, 2010, 182, 266-272.	12.4	42
20	Influence of pea and wheat growth on Pb, Cd, and Zn mobility and soil biological status in a polluted amended soil. Geoderma, 2009, 151, 241-248.	5.1	81
21	XRD, FTIR, and thermal analysis of bauxite ore-processing waste (red mud) exchanged with heavy metals. Clays and Clay Minerals, 2008, 56, 461-469.	1.3	96