Matthew S Kimber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2133478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The biosynthetic origin of ribofuranose in bacterial polysaccharides. Nature Chemical Biology, 2022, 18, 530-537.	3.9	3
2	How to extend your (polylactosamine) antennae. Journal of Biological Chemistry, 2021, 296, 100212.	1.6	2
3	The Ribosome-Binding Mode of Trichothecene Mycotoxins Rationalizes Their Structure—Activity Relationships. International Journal of Molecular Sciences, 2021, 22, 1604.	1.8	19
4	Bibenzyl synthesis in Cannabis sativa L. Plant Journal, 2021, , .	2.8	6
5	A Key Glycine in Bacterial Steroid-Degrading Acyl-CoA Dehydrogenases Allows Flavin-Ring Repositioning and Modulates Substrate Side Chain Specificity. Biochemistry, 2020, 59, 4081-4092.	1.2	5
6	A bifunctional O-antigen polymerase structure reveals a new glycosyltransferase family. Nature Chemical Biology, 2020, 16, 450-457.	3.9	26
7	The steroid side-chain–cleaving aldolase Ltp2–ChsH2DUF35 is a thiolase superfamily member with a radically repurposed active site. Journal of Biological Chemistry, 2019, 294, 11934-11943.	1.6	18
8	Bioinformatics analysis of diversity in bacterial glycan chain-termination chemistry and organization of carbohydrate-binding modules linked to ABC transporters. Glycobiology, 2019, 29, 822-838.	1.3	5
9	Biosynthesis of a conserved glycolipid anchor for Gram-negative bacterial capsules. Nature Chemical Biology, 2019, 15, 632-640.	3.9	31
10	Designing Glycosyltransferase Expression Constructs for Improved Purification, Protein Yield, and Crystallization. Methods in Molecular Biology, 2019, 1954, 137-150.	0.4	0
11	The small RbcS-like domains of the β-carboxysome structural protein CcmM bind RubisCO at a site distinct from that binding the RbcS subunit. Journal of Biological Chemistry, 2019, 294, 2593-5195.	1.6	44
12	Structural and kinetic characterization of (S)-1-amino-2-propanol kinase from the aminoacetone utilization microcompartment of Mycobacterium smegmatis. Journal of Biological Chemistry, 2018, 293, 19909-19918.	1.6	14
13	Structure and Kinetics of the S-(+)-1-Amino-2-propanol Dehydrogenase from the RMM Microcompartment of Mycobacterium smegmatis. Biochemistry, 2018, 57, 3780-3789.	1.2	16
14	A Novel Monomodular and Multifunctional Processive βâ€1,4â€Endoglucanase Has Been Identified and Characterized from Porcine Gut Microbiome. FASEB Journal, 2018, 32, 544.9.	0.2	0
15	Single polysaccharide assembly protein that integrates polymerization, termination, and chain-length quality control. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1215-E1223.	3.3	31
16	A Complete Structural Inventory of the Mycobacterial Microcompartment Shell Proteins Constrains Models of Global Architecture and Transport. Journal of Biological Chemistry, 2017, 292, 1197-1210.	1.6	41
17	The structure, kinetics and interactions of the β-carboxysomal β-carbonic anhydrase, CcaA. Biochemical Journal, 2016, 473, 4559-4572.	1.7	51
18	Structural and Kinetic Characterization of the 4-Carboxy-2-hydroxymuconate Hydratase from the Gallate and Protocatechuate 4,5-Cleavage Pathways of Pseudomonas putida KT2440. Journal of Biological Chemistry, 2016, 291, 7669-7686.	1.6	16

MATTHEW S KIMBER

#	Article	IF	CITATIONS
19	Bacterial β-Kdo glycosyltransferases represent a new glycosyltransferase family (GT99). Proceedings of the United States of America, 2016, 113, E3120-9.	3.3	43
20	Structure and Mutational Analyses of Escherichia coli ZapD Reveal Charged Residues Involved in FtsZ Filament Bundling. Journal of Bacteriology, 2016, 198, 1683-1693.	1.0	12
21	The Klebsiella pneumoniae O12 ATP-binding Cassette (ABC) Transporter Recognizes the Terminal Residue of Its O-antigen Polysaccharide Substrate. Journal of Biological Chemistry, 2016, 291, 9748-9761.	1.6	26
22	Biochemical Characterization of Bifunctional 3-Deoxy-β-d-manno-oct-2-ulosonic Acid (β-Kdo) Transferase KpsC from Escherichia coli Involved in Capsule Biosynthesis. Journal of Biological Chemistry, 2016, 291, 21519-21530.	1.6	22
23	Structures, Functions, and Interactions of ClpT1 and ClpT2 in the Clp Protease System of Arabidopsis Chloroplasts. Plant Cell, 2015, 27, 1477-1496.	3.1	40
24	YehZYXW of <i>Escherichia coli</i> Is a Low-Affinity, Non-Osmoregulatory Betaine-Specific ABC Transporter. Biochemistry, 2015, 54, 5735-5747.	1.2	25
25	Crystal Structure and Site-directed Mutational Analysis Reveals Key Residues Involved in Escherichia coli ZapA Function. Journal of Biological Chemistry, 2014, 289, 23276-23286.	1.6	22
26	Interactions and structural variability of β-carboxysomal shell protein CcmL. Photosynthesis Research, 2014, 121, 125-133.	1.6	21
27	Carboxysomal Carbonic Anhydrases. Sub-Cellular Biochemistry, 2014, 75, 89-103.	1.0	17
28	Identification and characterization of a carboxysomal γ-carbonic anhydrase from the cyanobacterium Nostoc sp. PCC 7120. Photosynthesis Research, 2014, 121, 135-150.	1.6	33
29	Carboxysomes – Sequestering RubisCO for Efficient Carbon Fixation. Advances in Photosynthesis and Respiration, 2014, , 133-148.	1.0	1
30	Cyanophycinase. , 2013, , 3625-3628.		0
31	A Dodecameric CcmK2 Structure Suggests β-Carboxysomal Shell Facets Have a Double-Layered Organization. Structure, 2012, 20, 1353-1362.	1.6	46
32	Carboxysomes: cyanobacterial RubisCO comes in small packages. Photosynthesis Research, 2011, 109, 7-20.	1.6	95
33	Structural and Theoretical Studies Indicate that the Cylindrical Protease ClpP Samples Extended and Compact Conformations. Structure, 2010, 18, 798-808.	1.6	59
34	Structural basis of the oxidative activation of the carboxysomal γ-carbonic anhydrase, CcmM. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2455-2460.	3.3	160
35	The Structural Basis of β-Peptide-Specific Cleavage by the Serine Protease Cyanophycinase. Journal of Molecular Biology, 2009, 392, 393-404.	2.0	22