Flora A Vega

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2133475/publications.pdf Version: 2024-02-01

FLORA A VECA

#	Article	IF	CITATIONS
1	Soils from abandoned shooting range facilities as contamination source of potentially toxic elements: distribution among soil geochemical fractions. Environmental Geochemistry and Health, 2021, 43, 4283-4297.	3.4	7
2	Assessment of iron-based and calcium-phosphate nanomaterials for immobilisation of potentially toxic elements in soils from a shooting range berm. Journal of Environmental Management, 2020, 267, 110640.	7.8	17
3	Chemical availability versus bioavailability of potentially toxic elements in mining and quarry soils. Chemosphere, 2020, 251, 126421.	8.2	11
4	Ability of Cytisus scoparius for phytoremediation of soils from a Pb/Zn mine: Assessment of metal bioaccumulation. Journal of Environmental Management, 2019, 235, 152-160.	7.8	34
5	Heavy metal content and toxicity of mine and quarry soils. Journal of Soils and Sediments, 2017, 17, 1331-1348.	3.0	18
6	Origin and spatial distribution of metals in urban soils. Journal of Soils and Sediments, 2017, 17, 1514-1526.	3.0	52
7	Copper, Chromium, Nickel, Lead and Zinc Levels and Pollution Degree in Firing Range Soils. Land Degradation and Development, 2016, 27, 1721-1730.	3.9	33
8	Pb pollution in soils from a trap shooting range and the phytoremediation ability of Agrostis capillaris L. Environmental Science and Pollution Research, 2016, 23, 1312-1323.	5.3	40
9	Validation of TOF-SIMS and FE-SEM/EDS Techniques Combined with Sorption and Desorption Experiments to Check Competitive and Individual Pb2+ and Cd2+ Association with Components of B Soil Horizons. PLoS ONE, 2015, 10, e0123977.	2.5	6
10	Identifying sources of Pb pollution in urban soils by means of MC-ICP-MS and TOF-SIMS. Environmental Science and Pollution Research, 2015, 22, 7859-7872.	5.3	17
11	Phytoavailable content of metals in soils from copper mine tailings (Touro mine, Galicia, Spain). Journal of Geochemical Exploration, 2014, 147, 159-166.	3.2	11
12	Limitations for revegetation in lead/zinc minesoils (NW Spain). Journal of Soils and Sediments, 2014, 14, 785-793.	3.0	13
13	Copper distribution in surface and subsurface soil horizons. Environmental Science and Pollution Research, 2014, 21, 10997-11008.	5.3	36
14	Risk of metal mobility in soils from a Pb/Zn depleted mine (Lugo, Spain). Environmental Earth Sciences, 2014, 72, 2541-2556.	2.7	24
15	Speciation of heavy metals in River Rhine. Water Research, 2013, 47, 363-372.	11.3	38
16	Effects of tree vegetation and waste amendments on the fractionation of Cr, Cu, Ni, Pb and Zn in polluted mine soils. Science of the Total Environment, 2013, 443, 446-453.	8.0	75
17	Modeling the plant–soil interaction in presence of heavy metal pollution and acidity variations. Environmental Monitoring and Assessment, 2013, 185, 73-80.	2.7	21
18	A soil quality index for reclaimed mine soils. Environmental Toxicology and Chemistry, 2013, 32, 2240-2248.	4.3	38

Flora A Vega

#	Article	IF	CITATIONS
19	Effects of vegetation on chemical and mineralogical characteristics of soils developed on a decantation bank from a copper mine. Science of the Total Environment, 2012, 421-422, 220-229.	8.0	119
20	The influence of soil properties on the individual and competitive sorption and desorption of Cu and Cd. Geoderma, 2011, 162, 20-26.	5.1	64
21	Development of a model to select plants with optimum metal phytoextraction potential. Environmental Science and Pollution Research, 2011, 18, 997-1003.	5.3	15
22	Heavy metal concentrations in plants and different harvestable parts: A soil–plant equilibrium model. Environmental Pollution, 2010, 158, 2659-2663.	7.5	25
23	The dynamics of heavy metals in plant–soil interactions. Ecological Modelling, 2010, 221, 1148-1152.	2.5	106
24	Soil fertility and spontaneous revegetation in lignite spoil banks under different amendments. Soil and Tillage Research, 2010, 110, 134-142.	5.6	43
25	Modification of a soil–vegetation nonlinear interaction model with acid deposition for simplified experimental applicability. Ecological Modelling, 2009, 220, 2137-2141.	2.5	12
26	The role of cation exchange in the sorption of cadmium, copper and lead by soils saturated with magnesium. Journal of Hazardous Materials, 2009, 171, 262-267.	12.4	14
27	Degradation of fuel oil in salt marsh soils affected by the Prestige oil spill. Journal of Hazardous Materials, 2009, 166, 1020-1029.	12.4	14
28	Effects of sewage sludge and barley straw treatment on the sorption and retention of Cu, Cd and Pb by coppermine Anthropic Regosols. Journal of Hazardous Materials, 2009, 169, 36-45.	12.4	36
29	Enrichment of marsh soils with heavy metals by effect of anthropic pollution. Journal of Hazardous Materials, 2009, 170, 1056-1063.	12.4	37
30	Hysteresis in the individual and competitive sorption of cadmium, copper, and lead by various soil horizons. Journal of Colloid and Interface Science, 2009, 331, 312-317.	9.4	24
31	A versatile parameter for comparing the capacities of soils for sorption and retention of heavy metals dumped individually or together: Results for cadmium, copper and lead in twenty soil horizons. Journal of Colloid and Interface Science, 2008, 327, 275-286.	9.4	47
32	Influence of mineral and organic components on copper, lead, and zinc sorption by acid soils. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42, 2167-2173.	1.7	12
33	Competitive sorption and desorption of heavy metals in mine soils: Influence of mine soil characteristics. Journal of Colloid and Interface Science, 2006, 298, 582-592.	9.4	173
34	Limiting factors for reforestation of mine spoils from Galicia (Spain). Land Degradation and Development, 2005, 16, 27-36.	3.9	44
35	Planting trees and amending with waste increases the capacity of mine tailings soils to retain Ni, Pb and Zn. Spanish Journal of Soil Science, 0, 4, .	0.0	2