Ragnhild Lunnan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2133434/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Type Icn SN 2021csp: Implications for the Origins of the Fastest Supernovae and the Fates of Wolf–Rayet Stars. Astrophysical Journal, 2022, 927, 180.	1.6	35
2	SNÂ2017gci: a nearby Type I Superluminous Supernova with a bumpy tail. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2120-2139.	1.6	16
3	Bright, Months-long Stellar Outbursts Announce the Explosion of Interaction-powered Supernovae. Astrophysical Journal, 2021, 907, 99.	1.6	59
4	The Palomar Transient Factory Core-collapse Supernova Host-galaxy Sample. I. Host-galaxy Distribution Functions and Environment Dependence of Core-collapse Supernovae. Astrophysical Journal, Supplement Series, 2021, 255, 29.	3.0	56
5	SN 2020bqj: A Type Ibn supernova with a long-lasting peak plateau. Astronomy and Astrophysics, 2021, 652, A136.	2.1	7
6	A low-energy explosion yields the underluminous Type IIP SN 2020cxd. Astronomy and Astrophysics, 2021, 655, A90.	2.1	10
7	Spectroscopy of the first resolved strongly lensed Type Ia supernova iPTF16geu. Monthly Notices of the Royal Astronomical Society, 2021, 502, 510-520.	1.6	8
8	PTF11rka: an interacting supernova at the crossroads of stripped-envelope and H-poor superluminous stellar core collapses. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3542-3556.	1.6	6
9	An extremely energetic supernova from a very massive star in a dense medium. Nature Astronomy, 2020, 4, 893-899.	4.2	31
10	SN 2020bvc: A Broad-line Type Ic Supernova with a Double-peaked Optical Light Curve and a Luminous X-Ray and Radio Counterpart. Astrophysical Journal, 2020, 902, 86.	1.6	25
11	Four (Super)luminous Supernovae from the First Months of the ZTF Survey. Astrophysical Journal, 2020, 901, 61.	1.6	25
12	The Zwicky Transient Facility Census of the Local Universe. I. Systematic Search for Calcium-rich Gap Transients Reveals Three Related Spectroscopic Subclasses. Astrophysical Journal, 2020, 905, 58.	1.6	57
13	Photometric Classification of 2315 Pan-STARRS1 Supernovae with Superphot. Astrophysical Journal, 2020, 905, 93.	1.6	15
14	SuperRAENN: A Semisupervised Supernova Photometric Classification Pipeline Trained on Pan-STARRS1 Medium-Deep Survey Supernovae. Astrophysical Journal, 2020, 905, 94.	1.6	43
15	Helium-rich Superluminous Supernovae from the Zwicky Transient Facility. Astrophysical Journal Letters, 2020, 902, L8.	3.0	18
16	A Radio Source Coincident with the Superluminous Supernova PTF10hgi: Evidence for a Central Engine and an Analog of the Repeating FRB 121102?. Astrophysical Journal Letters, 2019, 876, L10.	3.0	40
17	The Zwicky Transient Facility: Science Objectives. Publications of the Astronomical Society of the Pacific, 2019, 131, 078001.	1.0	453
18	PS1-13cbe: the rapid transition of a Seyfert 2 to a Seyfert 1. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4057-4070.	1.6	7

RAGNHILD LUNNAN

#	Article	IF	CITATIONS
19	Machine Learning for the Zwicky Transient Facility. Publications of the Astronomical Society of the Pacific, 2019, 131, 038002.	1.0	83
20	The luminous late-time emission of the type-lc supernova iPTF15dtg – evidence for powering from a magnetar?. Astronomy and Astrophysics, 2019, 621, A64.	2.1	19
21	Analysis of broad-lined Type Ic supernovae from the (intermediate) Palomar Transient Factory. Astronomy and Astrophysics, 2019, 621, A71.	2.1	59
22	On the Origin of SN 2016hil—A Type II Supernova in the Remote Outskirts of an Elliptical Host. Astrophysical Journal, 2019, 887, 127.	1.6	8
23	Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova: Pre-explosion Emission and a Rapidly Rising Luminous Transient. Astrophysical Journal, 2019, 887, 169.	1.6	55
24	Supernova Photometric Classification Pipelines Trained on Spectroscopically Classified Supernovae from the Pan-STARRS1 Medium-deep Survey. Astrophysical Journal, 2019, 884, 83.	1.6	33
25	The Zwicky Transient Facility: System Overview, Performance, and First Results. Publications of the Astronomical Society of the Pacific, 2019, 131, 018002.	1.0	1,020
26	An Empirical Study of Contamination in Deep, Rapid, and Wide-field Optical Follow-up of Gravitational Wave Events. Astrophysical Journal, 2018, 858, 18.	1.6	10
27	Spectra of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory. Astrophysical Journal, 2018, 855, 2.	1.6	98
28	Sifting for Sapphires: Systematic Selection of Tidal Disruption Events in iPTF. Astrophysical Journal, Supplement Series, 2018, 238, 15.	3.0	30
29	Oxygen and helium in stripped-envelope supernovae. Astronomy and Astrophysics, 2018, 618, A37.	2.1	26
30	Results from a Systematic Survey of X-Ray Emission from Hydrogen-poor Superluminous SNe. Astrophysical Journal, 2018, 864, 45.	1.6	47
31	iPTF 16hgs: A Double-peaked Ca-rich Gap Transient in a Metal-poor, Star-forming Dwarf Galaxy. Astrophysical Journal, 2018, 866, 72.	1.6	31
32	A hot and fast ultra-stripped supernova that likely formed a compact neutron star binary. Science, 2018, 362, 201-206.	6.0	84
33	A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova. Nature Astronomy, 2018, 2, 887-895.	4.2	39
34	Early Observations of the Type Ia Supernova iPTF 16abc: A Case of Interaction with Nearby, Unbound Material and/or Strong Ejecta Mixing. Astrophysical Journal, 2018, 852, 100.	1.6	49
35	Hydrogen-poor Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey. Astrophysical Journal, 2018, 852, 81.	1.6	88
36	First ALMA Light Curve Constrains Refreshed Reverse Shocks and Jet Magnetization in GRB 161219B. Astrophysical Journal, 2018, 862, 94.	1.6	32

RAGNHILD LUNNAN

#	Article	IF	CITATIONS
37	Far-UV HSTÂ Spectroscopy of an Unusual Hydrogen-poor Superluminous Supernova: SN2017egm. Astrophysical Journal, 2018, 858, 91.	1.6	26
38	iPTF16abc and the population of Type Ia supernovae: comparing the photospheric, transitional, and nebular phases. Monthly Notices of the Royal Astronomical Society, 2018, 480, 1445-1456.	1.6	13
39	The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. Astrophysical Journal, 2018, 859, 101.	1.6	1,694
40	X-Rays from the Location of the Double-humped Transient ASASSN-15lh. Astrophysical Journal, 2017, 836, 25.	1.6	51
41	iPTF16geu: A multiply imaged, gravitationally lensed type la supernova. Science, 2017, 356, 291-295.	6.0	168
42	Far-ultraviolet to Near-infrared Spectroscopy of a Nearby Hydrogen-poor Superluminous Supernova Gaia16apd. Astrophysical Journal, 2017, 840, 57.	1.6	57
43	Revisiting Optical Tidal Disruption Events with iPTF16axa. Astrophysical Journal, 2017, 842, 29.	1.6	124
44	Two New Calcium-rich Gap Transients in Group and Cluster Environments. Astrophysical Journal, 2017, 836, 60.	1.6	60
45	Hydrogen-poor Superluminous Supernovae with Late-time Hα Emission: Three Events From the Intermediate Palomar Transient Factory. Astrophysical Journal, 2017, 848, 6.	1.6	91
46	Color Me Intrigued: The Discovery of iPTF 16fnm, an SN 2002cx–like Object. Astrophysical Journal, 2017, 848, 59.	1.6	28
47	iPTF16fnl: A Faint and Fast Tidal Disruption Event in an E+A Galaxy. Astrophysical Journal, 2017, 844, 46.	1.6	111
48	Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star. Nature, 2017, 551, 210-213.	13.7	112
49	ON THE EARLY-TIME EXCESS EMISSION IN HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE. Astrophysical Journal, 2017, 835, 58.	1.6	61
50	Spatially resolved analysis of superluminous supernovae PTF 11hrq and PTF 12dam host galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4705-4717.	1.6	10
51	iPTF 16asu: A Luminous, Rapidly Evolving, and High-velocity Supernova. Astrophysical Journal, 2017, 851, 107.	1.6	57
52	The OmegaWhite Survey for Short-period Variable Stars. V. Discovery of an Ultracompact Hot Subdwarf Binary with a Compact Companion in a 44-minute Orbit. Astrophysical Journal, 2017, 851, 28.	1.6	21
53	HOST-GALAXY PROPERTIES OF 32 LOW-REDSHIFT SUPERLUMINOUS SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY. Astrophysical Journal, 2016, 830, 13.	1.6	170
54	PS1-14bj: A HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA WITH A LONG RISE AND SLOW DECAY. Astrophysical Journal, 2016, 831, 144.	1.6	68

Ragnhild Lunnan

#	Article	IF	CITATIONS
55	iPTF SEARCH FOR AN OPTICAL COUNTERPART TO GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 824, L24.	3.0	46
56	Long-rising Type II supernovae from Palomar Transient Factory and Caltech Core-Collapse Project. Astronomy and Astrophysics, 2016, 588, A5.	2.1	39
57	iPTF15dtg: a double-peaked Type Ic supernova from a massive progenitor. Astronomy and Astrophysics, 2016, 592, A89.	2.1	49
58	THE AFTERGLOW AND EARLY-TYPE HOST GALAXY OF THE SHORT GRB 150101B AT zÂ=Â0.1343. Astrophysical Journal, 2016, 833, 151.	1.6	62
59	THE INTERMEDIATE LUMINOSITY OPTICAL TRANSIENT SN 2010DA: THE PROGENITOR, ERUPTION, AND AFTERMATH OF A PECULIAR SUPERGIANT HIGH-MASS X-RAY BINARY. Astrophysical Journal, 2016, 830, 11.	1.6	30
60	SN 2015bn: A DETAILED MULTI-WAVELENGTH VIEW OF A NEARBY SUPERLUMINOUS SUPERNOVA. Astrophysical Journal, 2016, 826, 39.	1.6	133
61	METAMORPHOSIS OF SN 2014C: DELAYED INTERACTION BETWEEN A HYDROGEN POOR CORE-COLLAPSE SUPERNOVA AND A NEARBY CIRCUMSTELLAR SHELL. Astrophysical Journal, 2015, 815, 120.	1.6	105
62	TOWARD CHARACTERIZATION OF THE TYPE IIP SUPERNOVA PROGENITOR POPULATION: A STATISTICAL SAMPLE OF LIGHT CURVES FROM Pan-STARRS1. Astrophysical Journal, 2015, 799, 208.	1.6	149
63	ZOOMING IN ON THE PROGENITORS OF SUPERLUMINOUS SUPERNOVAE WITH THE <i>HST </i> . Astrophysical Journal, 2015, 804, 90.	1.6	86
64	SYSTEMATIC UNCERTAINTIES ASSOCIATED WITH THE COSMOLOGICAL ANALYSIS OF THE FIRST PAN-STARRS1 TYPE Ia SUPERNOVA SAMPLE. Astrophysical Journal, 2014, 795, 45.	1.6	131
65	RAPIDLY EVOLVING AND LUMINOUS TRANSIENTS FROM PAN-STARRS1. Astrophysical Journal, 2014, 794, 23.	1.6	254
66	HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE AND LONG-DURATION GAMMA-RAY BURSTS HAVE SIMILAR HOST GALAXIES. Astrophysical Journal, 2014, 787, 138.	1.6	221
67	THE ULTRAVIOLET-BRIGHT, SLOWLY DECLINING TRANSIENT PS1-11af AS A PARTIAL TIDAL DISRUPTION EVENT. Astrophysical Journal, 2014, 780, 44.	1.6	166
68	A PANCHROMATIC VIEW OF THE RESTLESS SN 2009ip REVEALS THE EXPLOSIVE EJECTION OF A MASSIVE STAR ENVELOPE. Astrophysical Journal, 2014, 780, 21.	1.6	182
69	SHORT GRB 130603B: DISCOVERY OF A JET BREAK IN THE OPTICAL AND RADIO AFTERGLOWS, AND A MYSTERIOUS LATE-TIME X-RAY EXCESS. Astrophysical Journal, 2014, 780, 118.	1.6	142
70	COSMOLOGICAL CONSTRAINTS FROM MEASUREMENTS OF TYPE Ia SUPERNOVAE DISCOVERED DURING THE FIRST 1.5 yr OF THE Pan-STARRS1 SURVEY. Astrophysical Journal, 2014, 795, 44.	1.6	262
71	SN 2012au: A GOLDEN LINK BETWEEN SUPERLUMINOUS SUPERNOVAE AND THEIR LOWER-LUMINOSITY COUNTERPARTS. Astrophysical Journal Letters, 2013, 770, L38.	3.0	71
72	Slowly fading super-luminous supernovae that are not pair-instability explosions. Nature, 2013, 502, 346-349.	13.7	226

Ragnhild Lunnan

#	Article	IF	CITATIONS
73	THE 300 km s ^{–1} STELLAR STREAM NEAR SEGUE 1: INSIGHTS FROM HIGH-RESOLUTION SPECTROSCOPY OF ITS BRIGHTEST STAR. Astrophysical Journal, 2013, 771, 39.	1.6	9
74	A REVERSE SHOCK IN GRB 130427A. Astrophysical Journal, 2013, 776, 119.	1.6	108
75	GRB 130606A AS A PROBE OF THE INTERGALACTIC MEDIUM AND THE INTERSTELLAR MEDIUM IN A STAR-FORMING GALAXY IN THE FIRST Gyr AFTER THE BIG BANG. Astrophysical Journal, 2013, 774, 26.	1.6	77
76	PS1-10bzj: A FAST, HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA IN A METAL-POOR HOST GALAXY. Astrophysical Journal, 2013, 771, 97.	1.6	79
77	PS1-10afx AT <i>z</i> = 1.388: PAN-STARRS1 DISCOVERY OF A NEW TYPE OF SUPERLUMINOUS SUPERNOVA. Astrophysical Journal, 2013, 767, 162.	1.6	56
78	PS1-12sk IS A PECULIAR SUPERNOVA FROM A He-RICH PROGENITOR SYSTEM IN A BRIGHTEST CLUSTER GALAXY ENVIRONMENT. Astrophysical Journal, 2013, 769, 39.	1.6	47
79	ULTRALUMINOUS SUPERNOVAE AS A NEW PROBE OF THE INTERSTELLAR MEDIUM IN DISTANT GALAXIES. Astrophysical Journal Letters, 2012, 755, L29.	3.0	57
80	THE EFFECTS OF PATCHY REIONIZATION ON SATELLITE GALAXIES OF THE MILKY WAY. Astrophysical Journal, 2012, 746, 109.	1.6	35
81	HOST GALAXY PROPERTIES OF THE SUBLUMINOUS GRB 120422A/SN 2012bz. Astrophysical Journal, 2012, 758, 92.	1.6	8
82	Using the topology of large-scale structure to constrain dark energy. Monthly Notices of the Royal Astronomical Society, 2011, , no-no.	1.6	13
83	ON THE POPULATIONS OF RADIO GALAXIES WITH EXTENDED MORPHOLOGY AT <i>z</i> < 0.3. Astrophysical Journal, 2010, 723, 1119-1138.	1.6	51