List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2133338/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A generalized magnetohydrodynamic two-phase free convection flow of dusty Casson fluid between parallel plates. Case Studies in Thermal Engineering, 2022, 29, 101657.	5.7	31
2	A scientific outcome of wall shear stress on dusty viscoelastic fluid along heat absorbing in an inclined channel. Case Studies in Thermal Engineering, 2022, 30, 101764.	5.7	13
3	Fractional model of MHD blood flow in a cylindrical tube containing magnetic particles. Scientific Reports, 2022, 12, 418.	3.3	6
4	Time fractional analysis of channel flow of couple stress Casson fluid using Fick's and Fourier's Laws. Scientific Reports, 2022, 12, 2956.	3.3	6
5	Free convection flow of second grade dusty fluid between two parallel plates using Fick's and Fourier's laws: a fractional model. Scientific Reports, 2022, 12, 3448.	3.3	12
6	DYNAMICS OF COOPERATIVE REACTIONS BASED ON CHEMICAL KINETICS WITH REACTION SPEED: A COMPARATIVE ANALYSIS WITH SINGULAR AND NONSINGULAR KERNELS. Fractals, 2022, 30, .	3.7	11
7	A time fractional model of Brinkman-type nanofluid with ramped wall temperature and concentration. Advances in Mechanical Engineering, 2022, 14, 168781322210960.	1.6	11
8	Magnetohydrodynamic Fluctuating Free Convection Flow of Second-Grade Fluid Flow in a Porous Medium. Mathematical Problems in Engineering, 2021, 2021, 1-13.	1.1	5
9	Quasilinearization numerical technique for dual slip MHD Newtonian fluid flow with entropy generation in thermally dissipating flow above a thin needle. Scientific Reports, 2021, 11, 15130.	3.3	3
10	Magnetohydrodynamic Blood Flow in a Cylindrical Tube with Magnetic Particles: A Time Fractional Model. Mathematical Problems in Engineering, 2021, 2021, 1-14.	1.1	5
11	Caputo Time Fractional Model Based on Generalized Fourier's and Fick's Laws for Jeffrey Nanofluid: Applications in Automobiles. Mathematical Problems in Engineering, 2021, 2021, 1-12.	1.1	4
12	Maxwell Nanofluid Flow over an Infinite Vertical Plate with Ramped and Isothermal Wall Temperature and Concentration. Mathematical Problems in Engineering, 2021, 2021, 1-19.	1.1	14
13	Couette flow of viscoelastic dusty fluid in a rotating frame along with the heat transfer. Scientific Reports, 2021, 11, 506.	3.3	21
14	Dynamics of fractal-fractional model of a new chaotic system of integrated circuit with Mittag-Leffler kernel. Chaos, Solitons and Fractals, 2021, 153, 111602.	5.1	36
15	A Time Fractional Model of Generalized Couette Flow of Couple Stress Nanofluid With Heat and Mass Transfer: Applications in Engine Oil. IEEE Access, 2020, 8, 146944-146966.	4.2	58
16	A report on COVID-19 epidemic in Pakistan using SEIR fractional model. Scientific Reports, 2020, 10, 22268.	3.3	62
17	Effects of MHD and porosity on entropy generation in two incompressible Newtonian fluids over a thin needle in a parallel free stream. Scientific Reports, 2020, 10, 22305.	3.3	1
18	On (p,q)-Sumudu and (p,q)-Laplace Transforms of the Basic Analogue of Aleph-Function. Symmetry, 2020, 12, 390.	2.2	2

#	Article	IF	CITATIONS
19	MHD effects on the channel flow of a fractional viscous fluid through a porous medium: An application of the Caputo-Fabrizio time-fractional derivative. Chinese Journal of Physics, 2020, 65, 14-23.	3.9	18
20	A Time Fractional Model With Non-Singular Kernel the Generalized Couette Flow of Couple Stress Nanofluid. IEEE Access, 2020, 8, 77378-77395.	4.2	19
21	Hall Effect on Radiative Casson Fluid Flow with Chemical Reaction on a Rotating Cone through Entropy Optimization. Entropy, 2020, 22, 480.	2.2	27
22	Thin Film Flow of Couple Stress Magneto-Hydrodynamics Nanofluid with Convective Heat over an Inclined Exponentially Rotating Stretched Surface. Coatings, 2020, 10, 338.	2.6	12
23	Exact Analysis of Non-Linear Electro-Osmotic Flow of Generalized Maxwell Nanofluid: Applications in Concrete Based Nano-Materials. IEEE Access, 2020, 8, 96738-96747.	4.2	18
24	A Report On Fluctuating Free Convection Flow Of Heat Absorbing Viscoelastic Dusty Fluid Past In A Horizontal Channel With MHD Effect. Scientific Reports, 2020, 10, 8523.	3.3	19
25	Generalized Model of Blood Flow in a Vertical Tube with Suspension of Gold Nanomaterials: Applications in the Cancer Therapy. Computers, Materials and Continua, 2020, 65, 171-192.	1.9	10
26	Entropy Generation in Different Types of Fractionalized Nanofluids. Arabian Journal for Science and Engineering, 2019, 44, 531-540.	3.0	34
27	Two-Phase Fluctuating Flow of Dusty Viscoelastic Fluid Between Non-Conducting Rigid Plates With Heat Transfer. IEEE Access, 2019, 7, 123299-123306.	4.2	19
28	Atangana–Baleanu fractional model for the flow of Jeffrey nanofluid with diffusion-thermo effects: applications in engine oil. Advances in Difference Equations, 2019, 2019, .	3.5	20
29	Fractional Model of Couple Stress Fluid for Generalized Couette Flow: A Comparative Analysis of Atangana–Baleanu and Caputo–Fabrizio Fractional Derivatives. IEEE Access, 2019, 7, 88643-88655.	4.2	28
30	The impact of magnetohydrodynamics and heat transfer on the unsteady flow of Casson fluid in an oscillating cylinder via integral transform: A Caputo–Fabrizio fractional model. Pramana - Journal of Physics, 2019, 93, 1.	1.8	10
31	Heat transfer analysis of generalized Jeffery nanofluid in a rotating frame: Atangana–Balaenu and Caputo–Fabrizio fractional models. Chaos, Solitons and Fractals, 2019, 129, 1-15.	5.1	37
32	Effects of Relative Magnetic Field, Chemical Reaction, Heat Generation and Newtonian Heating on Convection Flow of Casson Fluid over a Moving Vertical Plate Embedded in a Porous Medium. Scientific Reports, 2019, 9, 400.	3.3	36
33	Entropy Generation in MHD Conjugate Flow with Wall Shear Stress over an Infinite Plate: Exact Analysis. Entropy, 2019, 21, 359.	2.2	12
34	Atangana–Baleanu fractional model for electro-osmotic flow of viscoelastic fluids. Chaos, Solitons and Fractals, 2019, 124, 125-133.	5.1	13
35	Exact solutions for the Atangana-Baleanu time-fractional model of a Brinkman-type nanofluid in a rotating frame: Applications in solar collectors. European Physical Journal Plus, 2019, 134, 1.	2.6	8
36	Heat Transfer Analysis in Ethylene Glycol Based Molybdenum Disulfide Generalized Nanofluid via Atangana–Baleanu Fractional Derivative Approach. Studies in Systems, Decision and Control, 2019, , 217-233.	1.0	8

#	Article	IF	CITATIONS
37	The unsteady flow of generalized hybrid nanofluids: applications in cementitious materials. Journal of the Australian Ceramic Society, 2019, 55, 657-666.	1.9	12
38	Convection in ethylene glycol-based molybdenum disulfide nanofluid. Journal of Thermal Analysis and Calorimetry, 2019, 135, 523-532.	3.6	41
39	Flow of magnetic particles in blood with isothermal heating: A fractional model for two-phase flow. Journal of Magnetism and Magnetic Materials, 2018, 456, 413-422.	2.3	29
40	Numerical Analysis of the Unsteady Natural Convection MHD Couette Nanofluid Flow in the Presence of Thermal Radiation Using Single and Two-Phase Nanofluid Models for Cu–Water Nanofluids. International Journal of Applied and Computational Mathematics, 2018, 4, 1.	1.6	135
41	A modern approach of Caputo–Fabrizio time-fractional derivative to MHD free convection flow of generalized second-grade fluid in a porous medium. Neural Computing and Applications, 2018, 30, 1865-1875.	5.6	62
42	Heat and mass transfer phenomena in the flow of Casson fluid over an infinite oscillating plate in the presence of first-order chemical reaction and slip effect. Neural Computing and Applications, 2018, 30, 2159-2172.	5.6	24
43	Exact solutions for free convection flow of generalized Jeffrey fluid: A Caputo-Fabrizio fractional model. AEJ - Alexandria Engineering Journal, 2018, 57, 1849-1858.	6.4	71
44	The impact of side walls on the MHD flow of a second-grade fluid through a porous medium. Neural Computing and Applications, 2018, 30, 1103-1109.	5.6	7
45	Engine oil based generalized brinkmanâ€ŧype nanoâ€ŀiquid with molybdenum disulphide nanoparticles of spherical shape: Atanganaâ€Baleanu fractional model. Numerical Methods for Partial Differential Equations, 2018, 34, 1472-1488.	3.6	43
46	Effects of Different Shaped Nanoparticles on the Performance of Engine-Oil and Kerosene-Oil: A generalized Brinkman-Type Fluid model with Non-Singular Kernel. Scientific Reports, 2018, 8, 15285.	3.3	42
47	MHD Flow of Sodium Alginate-Based Casson Type Nanofluid Passing Through A Porous Medium With Newtonian Heating. Scientific Reports, 2018, 8, 8645.	3.3	69
48	Application of the modern trend of fractional differentiation to the MHD flow of a generalized Casson fluid in a microchannel: Modelling and solution⋆. European Physical Journal Plus, 2018, 133, 1.	2.6	10
49	A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid. European Physical Journal Plus, 2017, 132, 1.	2.6	85
50	Comparison and analysis of the Atangana–Baleanu and Caputo–Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction. Results in Physics, 2017, 7, 789-800.	4.1	186
51	Exact analysis of MHD flow of a Walters'-B fluid over an isothermal oscillating plate embedded in a porous medium. European Physical Journal Plus, 2017, 132, 1.	2.6	10
52	Solutions with Wright Function for Time Fractional Free Convection Flow of Casson Fluid. Arabian Journal for Science and Engineering, 2017, 42, 2565-2572.	3.0	41
53	Reply to the Comment by A.M. Abd El-Lateif, A.M. Abdel-Hameid on "Solutions with special functions for time fractional free convection flow of Brinkman-type fluid― European Physical Journal Plus, 2017, 132, 1.	2.6	0
54	On the applications of nanofluids to enhance the performance of solar collectors: A comparative analysis of Atangana-Baleanu and Caputo-Fabrizio fractional models. European Physical Journal Plus, 2017, 132, 1.	2.6	58

#	Article	IF	CITATIONS
55	Application of time-fractional derivatives with non-singular kernel to the generalized convective flow of Casson fluid in a microchannel with constant walls temperature. European Physical Journal: Special Topics, 2017, 226, 3791-3802.	2.6	22
56	MHD Flow of Micropolar Fluid over an Oscillating Vertical Plate Embedded in Porous Media with Constant Temperature and Concentration. Mathematical Problems in Engineering, 2017, 2017, 1-20.	1.1	24
57	UNSTEADY MHD FLOW OF SECOND-GRADE FLUID OVER AN OSCILLATING VERTICAL PLATE WITH ISOTHERMAL TEMPERATURE IN A POROUS MEDIUM WITH HEAT AND MASS TRANSFER BY USING THE LAPLACE TRANSFORM TECHNIQUE. Journal of Porous Media, 2017, 20, 671-690.	1.9	18
58	Solutions with special functions for time fractional free convection flow of Brinkman-type fluid. European Physical Journal Plus, 2016, 131, 1.	2.6	52
59	Application of Caputo-Fabrizio derivatives to MHD free convection flow of generalized Walters'-B fluid model. European Physical Journal Plus, 2016, 131, 1.	2.6	162
60	Influence of Slip Condition on Unsteady Free Convection Flow of Viscous Fluid with Ramped Wall Temperature. Abstract and Applied Analysis, 2015, 2015, 1-7.	0.7	16
61	Exact Solutions of Heat and Mass Transfer with MHD Flow in a Porous Medium under Time Dependent Shear Stress and Temperature. Abstract and Applied Analysis, 2015, 2015, 1-16.	0.7	2
62	Effects of Wall Shear Stress on MHD Conjugate Flow over an Inclined Plate in a Porous Medium with Ramped Wall Temperature. Mathematical Problems in Engineering, 2014, 2014, 1-15.	1.1	22
63	Effects of Wall Shear Stress on Unsteady MHD Conjugate Flow in a Porous Medium with Ramped Wall Temperature. PLoS ONE, 2014, 9, e90280.	2.5	21
64	Heat and Mass Transfer with Free Convection MHD Flow Past a Vertical Plate Embedded in a Porous Medium. Mathematical Problems in Engineering, 2013, 2013, 1-13.	1.1	30
65	Influence of Thermal Radiation on Unsteady Free Convection MHD Flow of Brinkman Type Fluid in a Porous Medium with Newtonian Heating. Mathematical Problems in Engineering, 2013, 2013, 1-13.	1.1	11
66	A Note on New Exact Solutions for Some Unsteady Flows of Brinkman- Type Fluids over a Plane Wall. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2012, 67, 377-380.	1.5	32
67	Radiation and Porosity Effects on the Magnetohydrodynamic Flow Past an Oscillating Vertical Plate with Uniform Heat Flux. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2012, 67, 572-580.	1.5	14
68	Unsteady Magnetohydrodynamic Oscillatory Flow of Viscoelastic Fluids in a Porous Channel with Heat and Mass Transfer. Journal of the Physical Society of Japan, 2012, 81, 064402.	1.6	26
69	A time-fractional model of free convection electro-osmotic flow of Casson fluid through a microchannel using generalized Fourier and Fick's law. Waves in Random and Complex Media, 0, , 1-20.	2.7	4