Hinrich Gronemeyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2133333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
2	Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-α. Nature, 1995, 375, 377-382.	13.7	1,155
3	Crystal structure of the RAR-Î ³ ligand-binding domain bound to all-trans retinoic acid. Nature, 1995, 378, 681-689.	13.7	1,115
4	A Unified Nomenclature System for the Nuclear Receptor Superfamily. Cell, 1999, 97, 161-163.	13.5	1,083
5	Principles for modulation of the nuclear receptor superfamily. Nature Reviews Drug Discovery, 2004, 3, 950-964.	21.5	1,019
6	A canonical structure for the ligand-binding domain of nuclear receptors. Nature Structural Biology, 1996, 3, 87-94.	9.7	859
7	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death and Differentiation, 2015, 22, 58-73.	5.0	811
8	The nuclear receptor ligand-binding domain: structure and function. Current Opinion in Cell Biology, 1998, 10, 384-391.	2.6	760
9	Senescence-associated reprogramming promotes cancer stemness. Nature, 2018, 553, 96-100.	13.7	714
10	The promise of retinoids to fight against cancer. Nature Reviews Cancer, 2001, 1, 181-193.	12.8	712
11	Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death and Differentiation, 2009, 16, 1093-1107.	5.0	599
12	Steroid hormone receptors compete for factors that mediate their enhancer function. Cell, 1989, 57, 433-442.	13.5	581
13	Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nature Medicine, 2005, 11, 77-84.	15.2	567
14	The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO Journal, 1998, 17, 507-519.	3.5	453
15	International Union of Pharmacology. LXIII. Retinoid X Receptors. Pharmacological Reviews, 2006, 58, 760-772.	7.1	451
16	RAR and RXR modulation in cancer and metabolic disease. Nature Reviews Drug Discovery, 2007, 6, 793-810.	21.5	450
17	The N-terminal region of the chicken progesterone receptor specifies target gene activation. Nature, 1988, 333, 185-188.	13.7	421
18	Nuclear receptor ligand-binding domains: three-dimensional structures, molecular interactions and pharmacological implications. Trends in Pharmacological Sciences, 2000, 21, 381-388.	4.0	420

#	Article	IF	CITATIONS
19	Crystal Structure of a Heterodimeric Complex of RAR and RXR Ligand-Binding Domains. Molecular Cell, 2000, 5, 289-298.	4.5	385
20	International Union of Pharmacology. LX. Retinoic Acid Receptors. Pharmacological Reviews, 2006, 58, 712-725.	7.1	369
21	Transcription Activation by Estrogen and Progesterone Receptors. Annual Review of Genetics, 1991, 25, 89-123.	3.2	364
22	Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nature Medicine, 2001, 7, 680-686.	15.2	334
23	Activation Function 2 in the Human Androgen Receptor Ligand Binding Domain Mediates Interdomain Communication with the NH2-terminal Domain. Journal of Biological Chemistry, 1999, 274, 37219-37225.	1.6	316
24	The contribution of the N- and C-terminal regions of steroid receptors to activation of transcription is both receptor and cell-specific. Nucleic Acids Research, 1989, 17, 2581-2595.	6.5	295
25	Synthetic Glucocorticoids That Dissociate Transactivation and AP-1 Transrepression Exhibit Antiinflammatory Activity <i>in Vivo</i> . Molecular Endocrinology, 1997, 11, 1245-1255.	3.7	286
26	Co-regulator recruitment and the mechanism of retinoic acid receptor synergy. Nature, 2002, 415, 187-192.	13.7	278
27	Functions, Therapeutic Applications, and Synthesis of Retinoids and Carotenoids. Chemical Reviews, 2014, 114, 1-125.	23.0	277
28	Design of selective nuclear receptor modulators: RAR and RXR as a case study. Nature Reviews Drug Discovery, 2007, 6, 811-820.	21.5	240
29	The Function of TIF2/GRIP1 in Mouse Reproduction Is Distinct from Those of SRC-1 and p/CIP. Molecular and Cellular Biology, 2002, 22, 5923-5937.	1.1	238
30	Control of transcription activation by steroid hormone receptors. FASEB Journal, 1992, 6, 2524-2529.	0.2	224
31	Two distinct actions of retinoid-receptor ligands. Nature, 1996, 382, 819-822.	13.7	215
32	Regulation of Retinoidal Actions by Diazepinylbenzoic Acids.1Retinoid Synergists Which Activate the RXRâ^'RAR Heterodimers. Journal of Medicinal Chemistry, 1997, 40, 4222-4234.	2.9	175
33	Cloning of the chicken progesterone receptor Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 5424-5428.	3.3	169
34	Widely Spaced, Directly Repeated PuGGTCA Elements Act as Promiscuous Enhancers for Different Classes of Nuclear Receptors. Molecular and Cellular Biology, 1995, 15, 5858-5867.	1.1	162
35	A single amino acid that determines the sensitivity of progesterone receptors to RU486. Science, 1992, 255, 206-209.	6.0	149
36	Modulators of the structural dynamics of the retinoid X receptor to reveal receptor function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17323-17328.	3.3	143

#	Article	IF	CITATIONS
37	A unique secondary-structure switch controls constitutive gene repression by retinoic acid receptor. Nature Structural and Molecular Biology, 2010, 17, 801-807.	3.6	142
38	Modulation of RXR function through ligand design. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 57-69.	1.2	134
39	Synergy between estrogen receptor \hat{I}_{\pm} activation functions AF1 and AF2 mediated by transcription intermediary factor TIF2. EMBO Reports, 2000, 1, 151-157.	2.0	133
40	Tumor suppressor IRF-1 mediates retinoid and interferon anticancer signaling to death ligand TRAIL. EMBO Journal, 2004, 23, 3051-3060.	3.5	133
41	Conformational adaptation of agonists to the human nuclear receptor RARÎ ³ . Nature Structural Biology, 1998, 5, 199-202.	9.7	132
42	Synthetic Glucocorticoids That Dissociate Transactivation and AP-1 Transrepression Exhibit Antiinflammatory Activity in Vivo. Molecular Endocrinology, 1997, 11, 1245-1255.	3.7	130
43	Selective class II HDAC inhibitors impair myogenesis by modulating the stability and activity of HDAC–MEF2 complexes. EMBO Reports, 2009, 10, 776-782.	2.0	125
44	A mutation mimicking ligand-induced conformational change yields a constitutive RXR that senses allosteric effects in heterodimers. EMBO Journal, 1997, 16, 5697-5709.	3.5	122
45	Cross-talk of vitamin D and glucocorticoids in hippocampal cells. Journal of Neurochemistry, 2006, 96, 500-509.	2.1	120
46	Single-tube linear DNA amplification (LinDA) for robust ChIP-seq. Nature Methods, 2011, 8, 565-567.	9.0	120
47	Characterization of the Interaction between Retinoic Acid Receptor/Retinoid X Receptor (RAR/RXR) Heterodimers and Transcriptional Coactivators through Structural and Fluorescence Anisotropy Studies. Journal of Biological Chemistry, 2005, 280, 1625-1633.	1.6	118
48	Nuclear receptors in cell life and death. Trends in Endocrinology and Metabolism, 2001, 12, 460-468.	3.1	116
49	Localization of ecdysterone on polytene chromosomes of Drosophila melanogaster Proceedings of the United States of America, 1980, 77, 2108-2112.	3.3	113
50	Towards novel paradigms for cancer therapy. Oncogene, 2011, 30, 1-20.	2.6	112
51	Rexinoid-Triggered Differentiation and Tumor-Selective Apoptosis of Acute Myeloid Leukemia by Protein Kinase A–Mediated Desubordination of Retinoid X Receptor. Cancer Research, 2005, 65, 8754-8765.	0.4	111
52	The retinoic acid signaling pathway regulates anterior/posterior patterning in the nerve cord and pharynx of amphioxus, a chordate lacking neural crest. Development (Cambridge), 2002, 129, 2905-2916.	1.2	110
53	Neofunctionalization in Vertebrates: The Example of Retinoic Acid Receptors. PLoS Genetics, 2006, 2, e102.	1.5	108
54	Differential Action on Coregulator Interaction Defines Inverse Retinoid Agonists and Neutral Antagonists. Chemistry and Biology, 2009, 16, 479-489.	6.2	108

#	Article	IF	CITATIONS
55	The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer. Genome Research, 2015, 25, 488-503.	2.4	106
56	RAR-independent RXR signaling induces t(15;17) leukemia cell maturation. EMBO Journal, 1999, 18, 7011-7018.	3.5	104
57	Regulator of Calcineurin 1 (RCAN1) Facilitates Neuronal Apoptosis through Caspase-3 Activation. Journal of Biological Chemistry, 2011, 286, 9049-9062.	1.6	102
58	Mechanisms of antihormone action. Journal of Steroid Biochemistry and Molecular Biology, 1992, 41, 217-221.	1.2	99
59	In vivo targeted mutagenesis of a regulatory element required for positioning the Hoxd-11 and Hoxd-10 expression boundaries Genes and Development, 1996, 10, 2326-2334.	2.7	97
60	Retinoid X receptor alpha forms tetramers in solution Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 8645-8649.	3.3	95
61	Multivalent DR5 Peptides Activate the TRAIL Death Pathway and Exert Tumoricidal Activity. Cancer Research, 2010, 70, 1101-1110.	0.4	95
62	Recruitment of RXR by Homotetrameric RARα Fusion Proteins Is Essential for Transformation. Cancer Cell, 2007, 12, 36-51.	7.7	93
63	Retinoids: potential in cancer prevention and therapy. Expert Reviews in Molecular Medicine, 2004, 6, 1-23.	1.6	90
64	Retinoid Receptors and Therapeutic Applications of RAR/RXR Modulators. Current Topics in Medicinal Chemistry, 2012, 12, 505-527.	1.0	86
65	Therapeutic potential of selective modulators of nuclear receptor action. Current Opinion in Chemical Biology, 1998, 2, 501-507.	2.8	85
66	Structural basis for engineering of retinoic acid receptor isotype-selective agonists and antagonists. Chemistry and Biology, 1999, 6, 519-529.	6.2	84
67	Efficient transactivation by retinoic acid receptors in yeast requires retinoid X receptors Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 4281-4285.	3.3	83
68	Rational design of RARâ€selective ligands revealed by RARβ crystal stucture. EMBO Reports, 2004, 5, 877-882.	2.0	83
69	Cloning of the human glucocorticoid receptor cDNA. Nucleic Acids Research, 1985, 13, 8293-8304.	6.5	81
70	Retinoid X Receptor-Antagonistic Diazepinylbenzoic Acids Chemical and Pharmaceutical Bulletin, 1999, 47, 1778-1786.	0.6	80
71	How to finger DNA. Nature, 1995, 375, 190-191.	13.7	79
72	Structure, function and modulation of retinoic acid receptor beta, a tumor suppressor. International Journal of Biochemistry and Cell Biology, 2007, 39, 1406-1415.	1.2	79

#	Article	IF	CITATIONS
73	DAXX, FLASH, and FAF-1 Modulate Mineralocorticoid and Glucocorticoid Receptor-Mediated Transcription in Hippocampal Cells—Toward a Basis for the Opposite Actions Elicited by Two Nuclear Receptors?. Molecular Pharmacology, 2004, 65, 761-769.	1.0	78
74	A functional genetic screen identifies retinoic acid signaling as a target of histone deacetylase inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17777-17782.	3.3	78
75	Dissecting the retinoidâ€induced differentiation of F9 embryonal stem cells by integrative genomics. Molecular Systems Biology, 2011, 7, 538.	3.2	76
76	Progestin receptors: Isoforms and antihormone action. Journal of Steroid Biochemistry and Molecular Biology, 1991, 40, 271-278.	1.2	69
77	Ligand- and DNA-induced dissociation of RXR tetramers 1 1Edited by M. Yaniv. Journal of Molecular Biology, 1998, 275, 55-65.	2.0	67
78	Synthesis of the PPARβ lδ-selective agonist GW501516 and C4-thiazole-substituted analogs. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 49-54.	1.0	63
79	Methylation specifies distinct estrogen-induced binding site repertoires of CBP to chromatin. Genes and Development, 2011, 25, 1132-1146.	2.7	60
80	Synthesis, Crystal Structure Analysis, and Pharmacological Characterization of Disila-bexarotene, a Disila-Analogue of the RXR-Selective Retinoid Agonist Bexarotene. Organometallics, 2005, 24, 3192-3199.	1.1	57
81	Homo- and heterodimers of the retinoid X receptor (RXR) activate transcription in yeast. Nucleic Acids Research, 1994, 22, 726-731.	6.5	56
82	Separation of Retinoid X Receptor Homo- and Heterodimerization Functions. Molecular and Cellular Biology, 2003, 23, 7678-7688.	1.1	56
83	Aronia melanocarpa Juice Induces a Redox-Sensitive p73-Related Caspase 3-Dependent Apoptosis in Human Leukemia Cells. PLoS ONE, 2012, 7, e32526.	1.1	55
84	HDACs class II-selective inhibition alters nuclear receptor-dependent differentiation. Journal of Molecular Endocrinology, 2010, 45, 219-228.	1.1	53
85	Epigenetic profiling of the antitumor natural product psammaplin A and its analogues. Bioorganic and Medicinal Chemistry, 2011, 19, 3637-3649.	1.4	52
86	Role of Ligand in Retinoid Signaling. 9-cis-Retinoic Acid Modulates the Oligomeric State of the Retinoid X Receptor. Biochemistry, 1995, 34, 13717-13721.	1.2	51
87	Retinoid receptor subtype-selective modulators through synthetic modifications of RARÎ ³ agonists. Bioorganic and Medicinal Chemistry, 2009, 17, 4345-4359.	1.4	51
88	Death Receptor Pathway Activation and Increase of ROS Production by the Triple Epigenetic Inhibitor UVI5008. Molecular Cancer Therapeutics, 2011, 10, 2394-2404.	1.9	49
89	The KDM5 family is required for activation of pro-proliferative cell cycle genes during adipocyte differentiation. Nucleic Acids Research, 2017, 45, 1743-1759.	6.5	49
90	Indole-Derived Psammaplin A Analogues as Epigenetic Modulators with Multiple Inhibitory Activities. Journal of Medicinal Chemistry, 2012, 55, 9467-9491.	2.9	48

#	Article	IF	CITATIONS
91	Acute myeloid leukemia: Therapeutic impact of epigenetic drugs. International Journal of Biochemistry and Cell Biology, 2005, 37, 1752-1762.	1.2	47
92	Evidence for two structurally related progesterone receptors in chick oviduct cytosol. FEBS Letters, 1983, 156, 287-292.	1.3	45
93	Affinity labelling of steroid hormone receptors. Molecular and Cellular Endocrinology, 1986, 46, 1-19.	1.6	45
94	Retinoic-acid-induced apoptosis in leukemia cells. Trends in Molecular Medicine, 2004, 10, 508-515.	3.5	45
95	HDAC inhibitors induce apoptosis in glucocorticoid-resistant acute lymphatic leukemia cells despite a switch from the extrinsic to the intrinsic death pathway. International Journal of Biochemistry and Cell Biology, 2007, 39, 1500-1509.	1.2	44
96	Type II antagonists impair the DNA binding of steroid hormone receptors without affecting dimerization. Journal of Steroid Biochemistry and Molecular Biology, 1993, 45, 205-215.	1.2	41
97	Nuclear receptor superfamily: Principles of signaling. Pure and Applied Chemistry, 2003, 75, 1619-1664.	0.9	41
98	Silicon Analogues of the RXRâ€6elective Retinoid Agonist SR11237 (BMS649): Chemistry and Biology. ChemMedChem, 2009, 4, 1143-1152.	1.6	41
99	Critical role of retinoid/rexinoid signaling in mediating transformation and therapeutic response of NUP98-RARG leukemia. Leukemia, 2015, 29, 1153-1162.	3.3	41
100	Co-resistance to retinoic acid and TRAIL by insertion mutagenesis into RAM. Oncogene, 2006, 25, 3735-3744.	2.6	40
101	Modulating Retinoid X Receptor with a Series of (<i>E</i>)-3-[4-Hydroxy-3-(3-alkoxy-5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)phenyl]acrylic Acids and Their 4-Alkoxy Isomers. Journal of Medicinal Chemistry, 2009, 52, 3150-3158.	2.9	40
102	A quality control system for profiles obtained by ChIP sequencing. Nucleic Acids Research, 2013, 41, e196-e196.	6.5	40
103	Dual role of DR5 in death and survival signaling leads to TRAIL resistance in cancer cells. Cell Death and Disease, 2017, 8, e3025-e3025.	2.7	40
104	CBP and P300 regulate distinct gene networks required for human primary myoblast differentiation and muscle integrity. Scientific Reports, 2018, 8, 12629.	1.6	39
105	Action Mechanism of Retinoid-Synergistic Dibenzodiazepines. Biochemical and Biophysical Research Communications, 1997, 233, 121-125.	1.0	38
106	Allosteric Effects Govern Nuclear Receptor Action: DNA Appears as a Player. Science Signaling, 2009, 2, pe34.	1.6	38
107	Heterodimeric Complex of RAR and RXR Nuclear Receptor Ligand-Binding Domains: Purification, Crystallization, and Preliminary X-Ray Diffraction Analysis. Protein Expression and Purification, 2000, 19, 284-288.	0.6	37
108	Single-tube linear DNA amplification for genome-wide studies using a few thousand cells. Nature Protocols, 2012, 7, 328-339.	5.5	37

#	Article	IF	CITATIONS
109	GR. , 2002, , 345-367.		37
110	Disila-analogues of the synthetic retinoids EC23 and TTNN: synthesis, structure and biological evaluation. Organic and Biomolecular Chemistry, 2012, 10, 6914.	1.5	36
111	Reappraisal of the Role of Heat Shock Proteins as Regulators of Steroid Receptor Activity. Critical Reviews in Biochemistry and Molecular Biology, 1998, 33, 437-466.	2.3	35
112	Silicon Analogues of the Retinoid Agonists TTNPB and 3â€Methylâ€TTNPB, Disilaâ€TTNPB and Disilaâ€3â€methylâ€TTNPB: Chemistry and Biology. ChemBioChem, 2007, 8, 1688-1699.	1.3	35
113	Human cells contain natural double-stranded RNAs with potential regulatory functions. Nature Structural and Molecular Biology, 2015, 22, 89-97.	3.6	35
114	Purification, Functional Characterization, and Crystallization of the Ligand Binding Domain of the Retinoid X Receptor. Protein Expression and Purification, 1995, 6, 604-608.	0.6	33
115	PIAS3 (protein inhibitor of activated STAT-3) modulates the transcriptional activation mediated by the nuclear receptor coactivator TIF2. FEBS Letters, 2002, 526, 142-146.	1.3	33
116	The retinoic acid signaling pathway regulates anterior/posterior patterning in the nerve cord and pharynx of amphioxus, a chordate lacking neural crest. Development (Cambridge), 2002, 129, 2905-16.	1.2	32
117	Growth Factor-Antagonized Rexinoid Apoptosis Involves Permissive PPARγ/RXR Heterodimers toÂActivate the Intrinsic Death Pathway by NO. Cancer Cell, 2009, 16, 220-231.	7.7	31
118	Switching agonistic, antagonistic, and mixed transcriptional responses to 11 beta-substituted progestins by mutation of the progesterone receptor. Molecular Endocrinology, 1992, 6, 2071-2078.	3.7	31
119	Retinoic acid receptor modulators: a perspective on recent advances and promises. Expert Opinion on Therapeutic Patents, 2011, 21, 55-63.	2.4	30
120	Transcription Activation by Nuclear Receptors. Journal of Receptors and Signal Transduction, 1993, 13, 667-691.	1.2	29
121	TIF2 Mediates the Synergy between RARα1 Activation Functions AF-1 and AF-2. Journal of Biological Chemistry, 2002, 277, 37961-37966.	1.6	28
122	Synthesis and Pharmacological Characterization of Disilaâ€AM80 (Disilaâ€ŧamibarotene) and Disilaâ€AM580, Silicon Analogues of the RARα‧elective Retinoid Agonists AM80 (Tamibarotene) and AM580. ChemMedChem, 2009, 4, 1797-1802.	1.6	28
123	The DNA Binding Pattern of the Retinoid X Receptor Is Regulated by Ligand-dependent Modulation of Its Oligomeric State. Journal of Biological Chemistry, 1997, 272, 12771-12777.	1.6	26
124	Photoinduced bonding of endogenous ecdysterone to salivary gland chromosomes of Chironomus tentans. Chromosoma, 1981, 82, 543-559.	1.0	25
125	Plasminogen activator urokinase expression reveals TRAIL responsiveness and supports fractional survival of cancer cells. Cell Death and Disease, 2014, 5, e1043-e1043.	2.7	25
126	Reconstructed cell fate–regulatory programs in stem cells reveal hierarchies and key factors of neurogenesis. Genome Research, 2016, 26, 1505-1519.	2.4	25

#	Article	IF	CITATIONS
127	C3 Halogen and C8′′ Substituents on Stilbene Arotinoids Modulate Retinoic Acid Receptor Subtype Function. ChemMedChem, 2009, 4, 1630-1640.	1.6	24
128	Quality Indicators Increase the Reliability of Microarray Data. Genomics, 2002, 80, 385-394.	1.3	23
129	Insights into the mechanism of the site-selective sequential palladium-catalyzed cross-coupling reactions of dibromothiophenes/dibromothiazoles and arylboronic acids. Synthesis of PPARβ/l´ agonists. Organic and Biomolecular Chemistry, 2006, 4, 4514-4525.	1.5	23
130	Leukemic transformation by the APL fusion protein PRKAR1A-RARα critically depends on recruitment of RXRα. Blood, 2010, 115, 643-652.	0.6	23
131	Sequences in the ligand-binding domains of the human androgen and progesterone receptors which determine their distinct ligand identities. Journal of Molecular Endocrinology, 1997, 18, 147-160.	1.1	22
132	Leukemia: beneficial actions of retinoids and rexinoids. International Journal of Biochemistry and Cell Biology, 2004, 36, 178-182.	1.2	21
133	Retinoic acid determines life span of leukemic cells by inducing antagonistic apoptosis-regulatory programs. International Journal of Biochemistry and Cell Biology, 2005, 37, 1696-1708.	1.2	21
134	Purification of the Human RARÎ ³ Ligand-Binding Domain and Crystallization of Its Complex with All-transRetinoic Acid. Biochemical and Biophysical Research Communications, 1997, 230, 293-296.	1.0	20
135	Monitoring ligand-mediated nuclear receptor-coregulator interactions by noncovalent mass spectrometry. FEBS Journal, 2004, 271, 4958-4967.	0.2	20
136	Discovery of Novel Transcriptional and Epigenetic Targets in APL by Global ChIP Analyses: Emerging Opportunity and Challenge. Cancer Cell, 2010, 17, 112-114.	7.7	20
137	Reconstruction of gene regulatory networks reveals chromatin remodelers and key transcription factors in tumorigenesis. Genome Medicine, 2016, 8, 57.	3.6	20
138	Sequential chromatin immunoprecipitation protocol for global analysis through massive parallel sequencing (reChIP-seq). Protocol Exchange, 0, , .	0.3	20
139	Retinoic acid protects human breast cancer cells against etoposide-induced apoptosis by NF-kappaB-dependent but cIAP2-independent mechanisms. Molecular Cancer, 2010, 9, 15.	7.9	19
140	Retinoids and TRAIL: Two Cooperating Actors to Fight Against Cancer. Vitamins and Hormones, 2004, 67, 319-345.	0.7	18
141	Genome-wide studies of nuclear receptors in cell fate decisions. Seminars in Cell and Developmental Biology, 2013, 24, 706-715.	2.3	18
142	Retinoic Acid Analogues Inhibit Human Herpesvirus 8 Replication. Antiviral Therapy, 2008, 13, 199-210.	0.6	17
143	Retinoic acid-response elements with a highly repetitive structure isolated by immuno-selection from genomic DNA. Journal of Steroid Biochemistry and Molecular Biology, 1993, 46, 121-133.	1.2	16
144	Highly Potent Naphthofuranâ€Based Retinoic Acid Receptor Agonists. ChemMedChem, 2009, 4, 780-791.	1.6	16

#	Article	IF	CITATIONS
145	Senescenceâ€secreted factors activate M yc and sensitize pretransformed cells to TRAILâ€induced apoptosis. Aging Cell, 2014, 13, 487-496.	3.0	16
146	Photoaffinity labelling of steroid hormone binding sites. Trends in Biochemical Sciences, 1985, 10, 264-267.	3.7	15
147	Cloning of a mouse glucocorticoid modulatory element binding protein, a new member of the KDWK family. FEBS Letters, 2000, 468, 203-210.	1.3	15
148	Inverse Agonists and Antagonists of Retinoid Receptors. Methods in Enzymology, 2010, 485, 161-195.	0.4	15
149	Characterising ChIP-seq binding patterns by model-based peak shape deconvolution. BMC Genomics, 2013, 14, 834.	1.2	15
150	Modeling gene-regulatory networks to describe cell fate transitions and predict master regulators. Npj Systems Biology and Applications, 2018, 4, 29.	1.4	15
151	Total synthesis of the proposed structures of the DNA methyl transferase inhibitors peyssonenynes, and structural revision of peyssonenyne B. Organic and Biomolecular Chemistry, 2011, 9, 6979.	1.5	14
152	Transformation-Dependent Silencing of Tumor-Selective Apoptosis-Inducing TRAIL by DNA Hypermethylation Is Antagonized by Decitabine. Molecular Cancer Therapeutics, 2011, 10, 1611-1623.	1.9	14
153	NGS-QC Generator: A Quality Control System for ChIP-Seq and Related Deep Sequencing-Generated Datasets. Methods in Molecular Biology, 2016, 1418, 243-265.	0.4	14
154	9-cis-Retinoic acid analogues with bulky hydrophobic rings: new RXR-selective agonists. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 6117-6122.	1.0	13
155	TRAIL: At the Center of Drugable Anti-Tumor Pathways. Cell Cycle, 2005, 4, 914-918.	1.3	13
156	A new era of cancer therapy: Cancer cell targeted therapies are coming of age. International Journal of Biochemistry and Cell Biology, 2008, 40, 1-8.	1.2	13
157	Pyrazine Arotinoids with Inverse Agonist Activities on the Retinoid and Rexinoid Receptors. ChemBioChem, 2009, 10, 1252-1259.	1.3	13
158	Retinoic acid via RARα inhibits the expression of 24-hydroxylase in human prostate stromal cells. Biochemical and Biophysical Research Communications, 2005, 338, 1973-1981.	1.0	12
159	New retinoid chemotypes: 9-cis-Retinoic acid analogs with hydrophobic rings derived from terpenes as selective RAR agonists. Bioorganic and Medicinal Chemistry, 2008, 16, 9719-9728.	1.4	12
160	Epigenetic Multiple Modulators. Current Topics in Medicinal Chemistry, 2011, 11, 2749-2787.	1.0	11
161	Targeted expression of tumor necrosis factor-related apoptosis-inducing ligand TRAIL in skin protects mice against chemical carcinogenesis. Molecular Cancer, 2011, 10, 34.	7.9	11
162	An Unexpected Mode Of Binding Defines BMS948 as A Full Retinoic Acid Receptor β (RARβ, NR1B2) Selective Agonist. PLoS ONE, 2015, 10, e0123195.	1.1	11

#	Article	IF	CITATIONS
163	Thioether Analogues of Disulfideâ€Bridged Cyclic Peptides Targeting Death Receptor 5: Conformational Analysis, Dimerisation and Consequences for Receptor Activation. ChemBioChem, 2015, 16, 293-301.	1.3	11
164	Mutation of isoleucine 747 by a threonine alters the ligand responsiveness of the human glucocorticoid receptor. Molecular Endocrinology, 1996, 10, 1214-1226.	3.7	11
165	Decryption of the retinoid death code in leukemia. Journal of Clinical Immunology, 2002, 22, 117-123.	2.0	9
166	A reappraisal of ecdysteroid binding in drosophila. Molecular and Cellular Endocrinology, 1983, 32, 171-178.	1.6	8
167	RAR–RXR Selectivity and Biological Activity of New Retinoic Acid Analogues with Heterocyclic or Polycyclic Aromatic Systems. Bioorganic and Medicinal Chemistry, 2002, 10, 2099-2102.	1.4	8
168	Antibody performance in ChIP-sequencing assays: From quality scores of public data sets to quantitative certification. F1000Research, 2016, 5, 54.	0.8	8
169	POLYPHEMUS: R package for comparative analysis of RNA polymerase II ChIP-seq profiles by non-linear normalization. Nucleic Acids Research, 2012, 40, e30-e30.	6.5	7
170	Assessing quality standards for ChIP-seq and related massive parallel sequencing-generated datasets: When rating goes beyond avoiding the crisis. Genomics Data, 2014, 2, 268-273.	1.3	7
171	Antibody performance in ChIP-sequencing assays: From quality scores of public data sets to quantitative certification. F1000Research, 2016, 5, 54.	0.8	7
172	Complexity against current cancer research: Are we on the wrong track?. International Journal of Cancer, 2022, 150, 1569-1578.	2.3	7
173	Peptide sequencing of the chick oviduct progesterone receptor form B. Molecular and Cellular Endocrinology, 1987, 52, 177-184.	1.6	6
174	Suppression of tumorigenicity in T-cell lymphoma hybrids is correlated with changes in myc expression and DNA replication of the myc chromosomal domain. Chromosoma, 1988, 96, 248-254.	1.0	6
175	Twenty years of nuclear receptors. EMBO Reports, 2006, 7, 579-584.	2.0	6
176	TARDIS, a targeted RNA directional sequencing method for rare RNA discovery. Nature Protocols, 2015, 10, 1915-1938.	5.5	6
177	Design and Stereoselective Synthesis of Retinoids with Ferrocene or <i>N</i> â€Butylcarbazole Pharmacophores that Induce Postâ€Differentiation Apoptosis in Acute Promyelocytic Leukemia Cells. ChemMedChem, 2011, 6, 1518-1529.	1.6	5
178	Epimetheus - a multi-profile normalizer for epigenomic sequencing data. BMC Bioinformatics, 2017, 18, 259.	1.2	5
179	A comprehensive resource for retrieving, visualizing, and integrating functional genomics data. Life Science Alliance, 2020, 3, e201900546.	1.3	5
180	Versatile Copurification Procedure for Rapid Isolation of Homogeneous RAR-RXR Heterodimers. Protein Expression and Purification, 1999, 16, 308-314.	0.6	4

#	Article	IF	CITATIONS
181	RXR. , 2002, , 248-272.		4
182	Fingering Modulators of Retinoic Acid Signaling Identifies New Prognostic Marker for Neuroblastoma. Cancer Cell, 2009, 15, 249-251.	7.7	4
183	Dual RXR Agonists and RAR Antagonists Based on the Stilbene Retinoid Scaffold. ACS Medicinal Chemistry Letters, 2014, 5, 533-537.	1.3	4
184	Structure–activity relationships of methylene or terminal side chain modified retinoids on the differentiation and cell death signaling in NB4 promyelocytic leukemia cells. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4257-4261.	1.0	3
185	A DNA Methyltransferase Modulator Inspired by Peyssonenyne Natural Product Structures. ChemMedChem, 2012, 7, 2101-2112.	1.6	3
186	LOGIQA: a database dedicated to long-range genome interactions quality assessment. BMC Genomics, 2016, 17, 355.	1.2	3
187	Inference from RNA interference: Suggestions to our authors. International Journal of Cancer, 2020, 146, 9-9.	2.3	3
188	Synthesis of a radiolabelled retinoid X receptor (RXR) specific ligand. , 1997, 39, 501-507.		2
189	RARÎ ² ligand-binding domain bound to an SRC-1 co-activator peptide: purification, crystallization and preliminary X-ray diffraction analysis. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 2048-2050.	2.5	2
190	Integrative Genomics to Dissect Retinoid Functions. Sub-Cellular Biochemistry, 2014, 70, 181-202.	1.0	2
191	Modulation of Retinoic Acid Receptor Subtypes by 5―and 8â€5ubstituted (Naphthalenâ€2â€yl)â€based Arotinoids. ChemMedChem, 2015, 10, 1378-1391.	1.6	2
192	Development of biotin-retinoid conjugates as chemical probes for analysis of retinoid function. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2442-2445.	1.0	2
193	Big Data: The good, the bad and the ugly. International Journal of Cancer, 2021, 148, 2870-2871.	2.3	2
194	PR. , 2002, , 375-390.		1
195	DNA recognition by nuclear receptors. , 2002, , 22-36.		1
196	Enantioselective apoptosis induction in histiocytic lymphoma cells and acute promyelocytic leukemia cells. Archives of Toxicology, 2013, 87, 303-310.	1.9	1
197	Signal Transduction and Structure of Nuclear Receptors. Growth Hormone, 2002, , 241-267.	0.2	1
198	Selective class II HDAC inhibitors impair myogenesis by modulating the stability and activity of HDACâ€MEF2 complexes. EMBO Reports, 2020, 21, e51028.	2.0	1

#	Article	lF	CITATIONS
199	Mechanism of nuclear receptor action: Structure and function. Atherosclerosis, 1999, 144, 143.	0.4	0
200	Ligand binding. , 2002, , 37-41.		0
201	Molecular mechanisms of transcriptional regulation. , 2002, , 42-61.		0
202	General organization of nuclear receptors. , 2002, , 3-21.		0
203	RXR subordination in heterodimers. , 2002, , 62-63.		0
204	RAR. , 2002, , 113-140.		0
205	Mechanism of Action and Cancer Therapeutic Potential of Retinoids. , 2006, , 49-73.		0
206	Inside Cover: Silicon Analogues of the RXR‧elective Retinoid Agonist SR11237 (BMS649): Chemistry and Biology (ChemMedChem 7/2009). ChemMedChem, 2009, 4, 1030-1030.	1.6	0
207	Chapter 24. Retinoic Acid Receptors and their Modulators: Structural and Functional Insights. Food and Nutritional Components in Focus, 2012, , 417-437.	0.1	0
208	ER. , 2002, , 308-335.		0
209	Nuclear receptors: platforms for multiple signal integration. , 2002, , 69-74.		0
210	Antagonist action. , 2002, , 64-68.		0
211	Deregulation in disease and novel therapeutic targets. , 2002, , 75-77.		0
212	Steroids, Retinoids, and their Mode of Action. , 1992, , 15-26.		0
213	About the variability, quality and reproducibility of ChIP-seq data. ScienceOpen Research, 0, , .	0.6	0
214	Exome Sequencing Identifies Mecom Missense Variant As Prognostic Marker for Overall Survival of Elderly Acute Myeloid Patients Treated with Azacitidine. Blood, 2018, 132, 1467-1467.	0.6	0
215	TP53 Mutations Negatively Impact Survival of Acute Myeloid Leukemia Patients Treated with Standard Doses of Azacitidine. Blood, 2018, 132, 2745-2745.	0.6	0
216	Reductionism that leads to manuscript rejection. International Journal of Cancer, 2022, 150, 1075-1076.	2.3	0