Michal Mazur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/21331/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ADOR mechanism for the synthesis of new zeolites. Chemical Society Reviews, 2015, 44, 7177-7206.	38.1	275
2	Synthesis of â€~unfeasible' zeolites. Nature Chemistry, 2016, 8, 58-62.	13.6	186
3	Hierarchical Hybrid Organic–Inorganic Materials with Tunable Textural Properties Obtained Using Zeolitic-Layered Precursor. Journal of the American Chemical Society, 2014, 136, 2511-2519.	13.7	74
4	A new layered MWW zeolite synthesized with the bifunctional surfactant template and the updated classification of layered zeolite forms obtained by direct synthesis. Journal of Materials Chemistry A, 2019, 7, 7701-7709.	10.3	41
5	lonomer content effect on charge and gas transport in the cathode catalyst layer of proton-exchange membrane fuel cells. Journal of Power Sources, 2021, 490, 229531.	7.8	38
6	Liquid dispersions of zeolite monolayers with high catalytic activity prepared by soft-chemical exfoliation. Science Advances, 2020, 6, eaay8163.	10.3	37
7	Core–Shell Metal Zeolite Composite Catalysts for In Situ Processing of Fischer–Tropsch Hydrocarbons to Gasoline Type Fuels. ACS Catalysis, 2020, 10, 2544-2555.	11.2	34
8	Encapsulation of Pt nanoparticles into IPC-2 and IPC-4 zeolites using the ADOR approach. Microporous and Mesoporous Materials, 2019, 279, 364-370.	4.4	31
9	Hydrotalcite-derived cobalt–aluminum mixed oxide catalysts for toluene combustion. Applied Surface Science, 2016, 362, 297-303.	6.1	30
10	Intercalation chemistry of layered zeolite precursor IPC-1P. Catalysis Today, 2014, 227, 37-44.	4.4	29
11	Vapour-phase-transport rearrangement technique for the synthesis of new zeolites. Nature Communications, 2019, 10, 5129.	12.8	29
12	Oxidative Dehydrogenation of Ethane with CO ₂ as a Soft Oxidant over a PtCe Bimetallic Catalyst. ACS Catalysis, 2021, 11, 9221-9232.	11.2	24
13	Swelling and pillaring of the layered precursor IPC-1P: tiny details determine everything. Dalton Transactions, 2014, 43, 10548.	3.3	23
14	Insight into the modification of electrodonor properties of multiwalled carbon nanotubes via oxygen plasma: Surface functionalization versus amorphization. Carbon, 2018, 137, 425-432.	10.3	23
15	Selective Recovery and Recycling of Germanium for the Design of Sustainable Zeolite Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 8235-8246.	6.7	23
16	A procedure for identifying possible products in the assembly–disassembly–organization–reassembly (ADOR) synthesis of zeolites. Nature Protocols, 2019, 14, 781-794.	12.0	22
17	Pressure-induced chemistry for the 2D to 3D transformation of zeolites. Journal of Materials Chemistry A, 2018, 6, 5255-5259.	10.3	21
18	Kinetics and Mechanism of the Hydrolysis and Rearrangement Processes within the Assembly–Disassembly–Organization–Reassembly Synthesis of Zeolites. Journal of the American Chemical Society, 2019, 141, 4453-4459.	13.7	21

MICHAL MAZUR

#	Article	IF	CITATIONS
19	Post‣ynthesis Functionalization Enables Fineâ€Tuning the Molecularâ€Sieving Properties of Zeolites for Light Olefin/Paraffin Separations. Advanced Materials, 2021, 33, e2105398.	21.0	20
20	Ru complexes of Hoveyda–Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions. Beilstein Journal of Organic Chemistry, 2015, 11, 2087-2096.	2.2	19
21	Exfoliated Ferrierite-Related Unilamellar Nanosheets in Solution and Their Use for Preparation of Mixed Zeolite Hierarchical Structures. Journal of the American Chemical Society, 2021, 143, 11052-11062.	13.7	18
22	Sonogashira Synthesis of New Porous Aromatic Framework-Entrapped Palladium Nanoparticles as Heterogeneous Catalysts for Suzuki–Miyaura Cross-Coupling. ACS Applied Materials & Interfaces, 2022, 14, 10428-10437.	8.0	18
23	Direct incorporation of B, Al, and Ga into medium-pore ITH zeolite: Synthesis, acidic, and catalytic properties. Catalysis Today, 2016, 277, 37-47.	4.4	17
24	Monitoring the assembly–disassembly–organisation–reassembly process of germanosilicate UTL through <i>in situ</i> pair distribution function analysis. Journal of Materials Chemistry A, 2018, 6, 17011-17018.	10.3	17
25	Zeolite framework functionalisation by tuneable incorporation of various metals into the IPC-2 zeolite. Inorganic Chemistry Frontiers, 2018, 5, 2746-2755.	6.0	17
26	Synthesis of Pt-MWW with controllable nanoparticle size. Catalysis Today, 2019, 324, 135-143.	4.4	17
27	The effect of UTL layer connectivity in isoreticular zeolites on the catalytic performance in toluene alkylation. Catalysis Today, 2016, 277, 55-60.	4.4	16
28	Pillaring of layered zeolite precursors with ferrierite topology leading to unusual molecular sieves on the micro/mesoporous border. Dalton Transactions, 2018, 47, 3029-3037.	3.3	16
29	Germanosilicate UTL and its rich chemistry of solid-state transformations towards IPC-2 (OKO) zeolite. Catalysis Today, 2015, 243, 23-31.	4.4	13
30	Poly(acrylic acid)-mediated synthesis of cerium oxide nanoparticles with variable oxidation states and their effect on regulating the intracellular ROS level. Journal of Materials Chemistry B, 2021, 9, 7386-7400.	5.8	13
31	Electronic/steric effects in hydrogenation of nitroarenes over the heterogeneous Pd@BEA and Pd@MWW catalysts. Catalysis Today, 2020, 345, 39-47.	4.4	11
32	Toward Controlling Disassembly Step within the ADOR Process for the Synthesis of Zeolites. Chemistry of Materials, 2021, 33, 1228-1237.	6.7	11
33	Imidazolium-type ionic liquid-assisted formation of the MFI zeolite loaded with metal nanoparticles for hydrogenation reactions. Chemical Engineering Journal, 2021, 412, 128599.	12.7	11
34	Magneto-structural correlations of novel kagomé-type metal organic frameworks. Journal of Materials Chemistry C, 2019, 7, 6692-6697.	5.5	10
35	Atomic Force Microscopy of Novel Zeolitic Materials Prepared by Topâ€Down Synthesis and ADOR Mechanism. Chemistry - A European Journal, 2014, 20, 10446-10450.	3.3	9
36	Controlling dispersion and accessibility of Pd nanoparticles via 2D-to-3D zeolite transformation for shape-selective catalysis: Pd@MWW case. Materials Today Nano, 2019, 8, 100056.	4.6	9

MICHAL MAZUR

#	Article	IF	CITATIONS
37	Nanosponge TSâ€l: A Fully Crystalline Hierarchical Epoxidation Catalyst. Advanced Materials Interfaces, 2021, 8, 2001288.	3.7	9
38	Controlled Synthesis of Large Single Crystals of Metalâ€Organic Framework CPOâ€27â€Ni Prepared by a Modulation Approach: <i>In situ</i> Singleâ€Crystal Xâ€ray Diffraction Studies. Chemistry - A European Journal, 2021, 27, 8537-8546.	3.3	8
39	Experimental and Theoretical Studies of Sonically Prepared Cu–Y, Cu–USY and Cu–ZSM-5 Catalysts for SCR deNOx. Catalysts, 2021, 11, 824.	3.5	8
40	Exfoliation of layered mixed zirconium 4-sulfophenylphosphonate phenylphosphonates. Dalton Transactions, 2020, 49, 3816-3823.	3.3	6
41	Preparation of Fe@MFI and CuFe@MFI composite hydrogenation catalysts by reductive demetallation of Fe-zeolites. Catalysis Today, 2022, 390-391, 306-315.	4.4	6
42	Hierarchical MTW zeolites in tetrahydropyranylation of alcohols: Comparison of bottom-up and top-down methods. Catalysis Today, 2019, 324, 123-134.	4.4	5
43	Mixed zeolite hybrids combining the MFI structure with exfoliated MWW monolayers. Microporous and Mesoporous Materials, 2021, 324, 111300.	4.4	5
44	Gas-phase isomerisation of m-xylene on isoreticular zeolites with tuneable porosity. Catalysis Today, 2021, , .	4.4	5
45	Zeolites in Pechmann condensation: Impact of the framework topology and type of acid sites. Catalysis Today, 2020, 345, 97-109.	4.4	3
46	Platinum nanoparticles supported on zeolite MWW nanosheets prepared via homogeneous solution route. Catalysis Today, 2022, 390-391, 335-342.	4.4	1
47	Electron microscopy methods for characterisation of zeolite catalysts. Catalysis, 2020, , 151-187.	1.0	1
48	Silver and copper modified zeolite imidazole frameworks as sustainable methane storage systems. Journal of Cleaner Production, 2022, 352, 131638.	9.3	1
49	Postâ€Synthesis Functionalization Enables Fineâ€Tuning the Molecularâ€Sieving Properties of Zeolites for Light Olefin/Paraffin Separations (Adv. Mater. 48/2021). Advanced Materials, 2021, 33, 2170376.	21.0	Ο