Liguang Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2133088/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chiral Inorganic Nanostructures. Chemical Reviews, 2017, 117, 8041-8093.	23.0	656
2	Attomolar DNA detection with chiral nanorod assemblies. Nature Communications, 2013, 4, 2689.	5.8	443
3	Dual-Mode Ultrasensitive Quantification of MicroRNA in Living Cells by Chiroplasmonic Nanopyramids Self-Assembled from Gold and Upconversion Nanoparticles. Journal of the American Chemical Society, 2016, 138, 306-312.	6.6	399
4	SERS Encoded Silver Pyramids for Attomolar Detection of Multiplexed Disease Biomarkers. Advanced Materials, 2015, 27, 1706-1711.	11.1	276
5	Chiral Molecule-mediated Porous Cu _{<i>x</i>} O Nanoparticle Clusters with Antioxidation Activity for Ameliorating Parkinson's Disease. Journal of the American Chemical Society, 2019, 141, 1091-1099.	6.6	264
6	Dual Quantification of MicroRNAs and Telomerase in Living Cells. Journal of the American Chemical Society, 2017, 139, 11752-11759.	6.6	262
7	Regiospecific Plasmonic Assemblies for <i>in Situ</i> Raman Spectroscopy in Live Cells. Journal of the American Chemical Society, 2012, 134, 1699-1709.	6.6	259
8	Enantiomer-dependent immunological response to chiral nanoparticles. Nature, 2022, 601, 366-373.	13.7	243
9	Hierarchical Plasmonic Nanorods and Upconversion Core–Satellite Nanoassemblies for Multimodal Imagingâ€Guided Combination Phototherapy. Advanced Materials, 2016, 28, 898-904.	11.1	240
10	Nanoparticle assemblies: dimensional transformation of nanomaterials and scalability. Chemical Society Reviews, 2013, 42, 3114.	18.7	216
11	Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nature Chemistry, 2018, 10, 821-830.	6.6	189
12	SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection. Biosensors and Bioelectronics, 2015, 71, 7-12.	5.3	186
13	Building An Aptamer/Graphene Oxide FRET Biosensor for One-Step Detection of Bisphenol A. ACS Applied Materials & Interfaces, 2015, 7, 7492-7496.	4.0	145
14	A SERS-active sensor based on heterogeneous gold nanostar core–silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1. Nanoscale, 2016, 8, 1873-1878.	2.8	139
15	Chiral Core–Shell Upconversion Nanoparticle@MOF Nanoassemblies for Quantification and Bioimaging of Reactive Oxygen Species <i>in Vivo</i> . Journal of the American Chemical Society, 2019, 141, 19373-19378.	6.6	139
16	Propeller‣ike Nanorodâ€Upconversion Nanoparticle Assemblies with Intense Chiroptical Activity and Luminescence Enhancement in Aqueous Phase. Advanced Materials, 2016, 28, 5907-5915.	11.1	132
17	MicroRNAâ€Directed Intracellular Selfâ€Assembly of Chiral Nanorod Dimers. Angewandte Chemie - International Edition, 2018, 57, 10544-10548.	7.2	127
18	A Chiralâ€Nanoassembliesâ€Enabled Strategy for Simultaneously Profiling Surface Clycoprotein and MicroRNA in Living Cells. Advanced Materials, 2017, 29, 1703410.	11.1	119

#	Article	IF	CITATIONS
19	Unusual Circularly Polarized Photocatalytic Activity in Nanogapped Gold–Silver Chiroplasmonic Nanostructures. Advanced Functional Materials, 2015, 25, 5816-5822.	7.8	117
20	Multigaps Embedded Nanoassemblies Enhance In Situ Raman Spectroscopy for Intracellular Telomerase Activity Sensing. Advanced Functional Materials, 2016, 26, 1602-1608.	7.8	115
21	Ultrasensitive SERS detection of mercury based on the assembled gold nanochains. Biosensors and Bioelectronics, 2015, 67, 472-476.	5.3	112
22	Hybrid Nanoparticle Pyramids for Intracellular Dual MicroRNAs Biosensing and Bioimaging. Advanced Materials, 2017, 29, 1606086.	11.1	105
23	Tuning the interactions between chiral plasmonic films and livingÂcells. Nature Communications, 2017, 8, 2007.	5.8	102
24	Chiralityâ€Based Biosensors. Advanced Functional Materials, 2019, 29, 1805512.	7.8	102
25	Triple Raman Labelâ€Encoded Gold Nanoparticle Trimers for Simultaneous Heavy Metal Ion Detection. Small, 2015, 11, 3435-3439.	5.2	100
26	Artificial Chiral Probes and Bioapplications. Advanced Materials, 2020, 32, e1802075.	11.1	99
27	Stimulation of neural stem cell differentiation by circularly polarized light transduced by chiral nanoassemblies. Nature Biomedical Engineering, 2021, 5, 103-113.	11.6	98
28	Gold nanorodassembly based approach to toxin detection by SERS. Journal of Materials Chemistry, 2012, 22, 2387-2391.	6.7	97
29	Gold nanoparticle-based paper sensor for ultrasensitive and multiple detection of 32 (fluoro)quinolones by one monoclonal antibody. Nano Research, 2017, 10, 108-120.	5.8	97
30	Intracellular localization of nanoparticle dimers by chirality reversal. Nature Communications, 2017, 8, 1847.	5.8	93
31	Single- and multi-component chiral supraparticles as modular enantioselective catalysts. Nature Communications, 2019, 10, 4826.	5.8	93
32	Goldâ€Quantum Dot Core–Satellite Assemblies for Lighting Up MicroRNA In Vitro and In Vivo. Small, 2016, 12, 4662-4668.	5.2	90
33	Circular Polarized Light Activated Chiral Satellite Nanoprobes for the Imaging and Analysis of Multiple Metal Ions in Living Cells. Angewandte Chemie - International Edition, 2019, 58, 3913-3917.	7.2	87
34	Lightâ€Induced Chiral Iron Copper Selenide Nanoparticles Prevent βâ€Amyloidopathy Inâ€Vivo. Angewandte Chemie - International Edition, 2020, 59, 7131-7138.	7.2	85
35	Chirality-based Au@Ag Nanorod Dimers Sensor for Ultrasensitive PSA Detection. ACS Applied Materials & amp; Interfaces, 2015, 7, 12708-12712.	4.0	83
36	Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles. Nature Nanotechnology, 2022, 17, 408-416.	15.6	83

#	Article	IF	CITATIONS
37	Chiral Semiconductor Nanoparticles for Protein Catalysis and Profiling. Angewandte Chemie - International Edition, 2019, 58, 7371-7374.	7.2	82
38	Quantitative zeptomolar imaging of miRNA cancer markers with nanoparticle assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3391-3400.	3.3	82
39	Preparation and evaluation of superparamagnetic surface molecularly imprinted polymer nanoparticles for selective extraction of bisphenol A in packed food. Analytical Methods, 2011, 3, 1737.	1.3	80
40	SERS- and luminescence-active Au–Au–UCNP trimers for attomolar detection of two cancer biomarkers. Nanoscale, 2017, 9, 3865-3872.	2.8	78
41	Chirality on Hierarchical Selfâ€Assembly of Au@AuAg Yolk–Shell Nanorods into Core–Satellite Superstructures for Biosensing in Human Cells. Advanced Functional Materials, 2018, 28, 1802372.	7.8	75
42	Gold immunochromatographic sensor for the rapid detection of twenty-six sulfonamides in foods. Nano Research, 2017, 10, 2833-2844.	5.8	71
43	Cold Coreâ€DNAâ€Silver Shell Nanoparticles with Intense Plasmonic Chiroptical Activities. Advanced Functional Materials, 2015, 25, 850-854.	7.8	70
44	Ultrasensitive Detection of Prostateâ€ s pecific Antigen and Thrombin Based on Goldâ€Upconversion Nanoparticle Assembled Pyramids. Small, 2017, 13, 1603944.	5.2	70
45	Rapid and sensitive detection of diclazuril in chicken samples using a gold nanoparticle-based lateral-flow strip. Food Chemistry, 2020, 312, 126116.	4.2	70
46	Building SERS-active heteroassemblies for ultrasensitive Bisphenol A detection. Biosensors and Bioelectronics, 2016, 81, 138-142.	5.3	69
47	Chiral Plasmonic Triangular Nanorings with SERS Activity for Ultrasensitive Detection of Amyloid Proteins in Alzheimer's Disease. Advanced Materials, 2021, 33, e2102337.	11.1	68
48	Direct observation of selective autophagy induction in cells and tissues by self-assembled chiral nanodevice. Nature Communications, 2018, 9, 4494.	5.8	67
49	Tailoring Chiroptical Activity of Iron Disulfide Quantum Dot Hydrogels with Circularly Polarized Light. Advanced Materials, 2019, 31, e1903200.	11.1	65
50	Spiny Nanorod and Upconversion Nanoparticle Satellite Assemblies for Ultrasensitive Detection of Messenger RNA in Living Cells. Analytical Chemistry, 2018, 90, 5414-5421.	3.2	64
51	A colorimetric paper-based sensor for toltrazuril and its metabolites in feed, chicken, and egg samples. Food Chemistry, 2019, 276, 707-713.	4.2	62
52	Highly selective recognition and ultrasensitive quantification of enantiomers. Journal of Materials Chemistry B, 2013, 1, 4478.	2.9	60
53	Sensitive Detection of Silver Ions Based on Chiroplasmonic Assemblies of Nanoparticles. Advanced Optical Materials, 2013, 1, 626-630.	3.6	60
54	Gold nanorod ensembles as artificial molecules for applications in sensors. Journal of Materials Chemistry, 2011, 21, 16759.	6.7	59

#	Article	IF	CITATIONS
55	Biocompatible Cupâ€Shaped Nanocrystal with Ultrahigh Photothermal Efficiency as Tumor Therapeutic Agent. Advanced Functional Materials, 2017, 27, 1700605.	7.8	59
56	Chiral Cu <i>_x</i> OS@ZIFâ€8 Nanostructures for Ultrasensitive Quantification of Hydrogen Sulfide In Vivo. Advanced Materials, 2020, 32, e1906580.	11.1	59
57	ldentification and quantification of eight Listeria monocytogene serotypes from Listeria spp. using a gold nanoparticle-based lateral flow assay. Mikrochimica Acta, 2017, 184, 715-724.	2.5	58
58	Photoactive Hybrid AuNRâ€₽t@Ag ₂ S Core–Satellite Nanostructures for Nearâ€Infrared Quantitive Cell Imaging. Advanced Functional Materials, 2017, 27, 1703408.	7.8	58
59	Spiky Fe ₃ O ₄ @Au Supraparticles for Multimodal In Vivo Imaging. Advanced Functional Materials, 2018, 28, 1800310.	7.8	58
60	Ultrasensitive SERS detection of VEGF based on a self-assembled Ag ornamented–AU pyramid superstructure. Biosensors and Bioelectronics, 2015, 68, 593-597.	5.3	57
61	Scissorâ€Like Chiral Metamolecules for Probing Intracellular Telomerase Activity. Advanced Functional Materials, 2016, 26, 7352-7358.	7.8	51
62	Tuning of chiral construction, structural diversity, scale transformation and chiroptical applications. Materials Horizons, 2018, 5, 141-161.	6.4	50
63	An NIRâ€Responsive DNAâ€Mediated Nanotetrahedron Enhances the Clearance of Senescent Cells. Advanced Materials, 2020, 32, e2000184.	11.1	49
64	Goldâ€Nanoparticleâ€Based Multiplexed Immunochromatographic Strip for Simultaneous Detection of Staphylococcal Enterotoxin A, B, C, D, and E. Particle and Particle Systems Characterization, 2016, 33, 388-395.	1.2	48
65	An Overview for the Nanoparticlesâ€Based Quantitative Lateral Flow Assay. Small Methods, 2022, 6, e2101143.	4.6	48
66	Heterostructures of MOFs and Nanorods for Multimodal Imaging. Advanced Functional Materials, 2018, 28, 1805320.	7.8	47
67	Simple, rapid and sensitive detection of antibiotics based on the side-by-side assembly of gold nanorod probes. Biosensors and Bioelectronics, 2011, 26, 4387-4392.	5.3	45
68	Engineering of chiral nanomaterials for biomimetic catalysis. Chemical Science, 2020, 11, 12937-12954.	3.7	45
69	Immunoassays for the rapid detection of pantothenic acid in pharmaceutical and food products. Food Chemistry, 2021, 348, 129114.	4.2	44
70	Production of a monoclonal antibody for the detection of vitamin B ₁ and its use in an indirect enzyme-linked immunosorbent assay and immunochromatographic strip. Journal of Materials Chemistry B, 2020, 8, 1935-1943.	2.9	44
71	Plasmonic Core–Satellites Nanostructures with High Chirality and Bioproperty. Journal of Physical Chemistry Letters, 2013, 4, 2379-2384	2.1	41
72	Development of sensitive and fast immunoassays for amantadine detection. Food and Agricultural Immunology, 2016, 27, 678-688.	0.7	41

#	Article	IF	CITATIONS
73	The Development of Chiral Nanoparticles to Target NK Cells and CD8 ⁺ T Cells for Cancer Immunotherapy. Advanced Materials, 2022, 34, e2109354.	11.1	41
74	A self-assembled chiral-aptasensor for ATP activity detection. Nanoscale, 2016, 8, 15008-15015.	2.8	40
75	Rapid quantitative determination of fentanyl in human urine and serum using a gold-based immunochromatographic strip sensor. Journal of Materials Chemistry B, 2020, 8, 8573-8584.	2.9	40
76	Chiral Cu _{<i>x</i>} Co _{<i>y</i>} S Nanoparticles under Magnetic Field and NIR Light to Eliminate Senescent Cells. Angewandte Chemie - International Edition, 2020, 59, 13915-13922.	7.2	40
77	Ultrasmall Magneto-chiral Cobalt Hydroxide Nanoparticles Enable Dynamic Detection of Reactive Oxygen Species <i>in Vivo</i> . Journal of the American Chemical Society, 2022, 144, 1580-1588.	6.6	39
78	General immunoassay for pyrethroids based on a monoclonal antibody. Food and Agricultural Immunology, 2014, 25, 341-349.	0.7	38
79	Aptamer-Gated Ion Channel for Ultrasensitive Mucin 1 Detection. Analytical Chemistry, 2021, 93, 4825-4831.	3.2	38
80	Gold nanoparticle-based paper sensor for multiple detection of 12 Listeria spp. by P60-mediated monoclonal antibody. Food and Agricultural Immunology, 2017, 28, 274-287.	0.7	37
81	2D Chiroptical Nanostructures for Highâ€Performance Photooxidants. Advanced Functional Materials, 2018, 28, 1707237.	7.8	37
82	Asymmetric and symmetric PCR of gold nanoparticles: A pathway to scaled-up self-assembly with tunable chirality. Journal of Materials Chemistry, 2012, 22, 5574.	6.7	35
83	Development of an ultrasensitive ic-ELISA and immunochromatographic strip assay for the simultaneous detection of florfenicol and thiamphenicol in eggs. Food and Agricultural Immunology, 2018, 29, 254-266.	0.7	35
84	Tetrahedron Probes for Ultrasensitive <i>In Situ</i> Detection of Telomerase and Surface Glycoprotein Activity in Living Cells. Analytical Chemistry, 2020, 92, 2310-2315.	3.2	35
85	An immunochromatographic sensor for ultrasensitive and direct detection of histamine in fish. Journal of Hazardous Materials, 2021, 419, 126533.	6.5	35
86	Orientational nanoparticle assemblies and biosensors. Biosensors and Bioelectronics, 2016, 79, 220-236.	5.3	34
87	SERS-active silver nanoparticle trimers for sub-attomolar detection of alpha fetoprotein. RSC Advances, 2015, 5, 73395-73398.	1.7	33
88	Gold nanoparticle-based strip sensor for multiple detection of twelve Salmonella strains with a genus-specific lipopolysaccharide antibody. Science China Materials, 2016, 59, 665-674.	3.5	33
89	Development of an immunochromatographic test strip for the detection of ochratoxin A in red wine. Food and Agricultural Immunology, 2018, 29, 434-444.	0.7	33
90	Development of determination of di-n-octyl phthalate (DOP) residue by an indirect enzyme-linked immunosorbent assay. Food and Agricultural Immunology, 2010, 21, 265-277.	0.7	32

#	Article	IF	CITATIONS
91	Building heterogeneous core–satellite chiral assemblies for ultrasensitive toxin detection. Biosensors and Bioelectronics, 2015, 66, 554-558.	5.3	32
92	Development of monoclonal antibody-based colloidal gold immunochromatographic assay for analysis of halofuginone in milk. Food and Agricultural Immunology, 2019, 30, 112-122.	0.7	30
93	An immunochromatographic strip sensor for sildenafil and its analogues. Journal of Materials Chemistry B, 2019, 7, 6383-6389.	2.9	30
94	Circularly Polarized Light Triggers Biosensing Based on Chiral Assemblies. Chemistry - A European Journal, 2019, 25, 12235-12240.	1.7	29
95	Mitochondriaâ€Targeting Plasmonic Spiky Nanorods Increase the Elimination of Aging Cells in Vivo. Angewandte Chemie - International Edition, 2020, 59, 8698-8705.	7.2	29
96	Chiral Semiconductor Nanoparticles for Protein Catalysis and Profiling. Angewandte Chemie, 2019, 131, 7449-7452.	1.6	28
97	Chiral Selfâ€Assembled Film from Semiconductor Nanorods with Ultra‣trong Circularly Polarized Luminescence. Angewandte Chemie - International Edition, 2021, 60, 26276-26280.	7.2	28
98	MRI Biosensor for Lead Detection Based on the DNAzyme-Induced Catalytic Reaction. Journal of Physical Chemistry B, 2013, 117, 14367-14371.	1.2	27
99	An ultrasensitive immunochromatographic assay for non-pretreatment monitoring of chloramphenicol in raw milk. Food and Agricultural Immunology, 2015, 26, 635-644.	0.7	27
100	Chirality at nanoscale for bioscience. Chemical Science, 2022, 13, 3069-3081.	3.7	27
101	Rapid detection of praziquantel using monoclonal antibody-based ic-ELISA and immunochromatographic strips. Food and Agricultural Immunology, 2019, 30, 913-923.	0.7	26
102	Directing Arrowhead Nanorod Dimers for MicroRNA In Situ Raman Detection in Living Cells. Advanced Functional Materials, 2020, 30, 2001451.	7.8	26
103	Ultrasmall Copper (I) Sulfide Nanoparticles Prevent Hepatitisâ€B Virus Infection. Angewandte Chemie - International Edition, 2021, 60, 13073-13080.	7.2	26
104	Development and application of one-step ELISA for the detection of neomycin in milk. Food and Agricultural Immunology, 2011, 22, 259-269.	0.7	25
105	Peptide Mediated Chiral Inorganic Nanomaterials for Combating Gramâ€Negative Bacteria. Advanced Functional Materials, 2018, 28, 1805112.	7.8	25
106	Circular Polarized Light Activated Chiral Satellite Nanoprobes for the Imaging and Analysis of Multiple Metal Ions in Living Cells. Angewandte Chemie, 2019, 131, 3953-3957.	1.6	25
107	Development of an immunochromatographic strip for the rapid detection of maduramicin in chicken and egg samples. Food and Agricultural Immunology, 2018, 29, 458-469.	0.7	24
108	Preparation of an anti-thiamethoxam monoclonal antibody for development of an indirect competitive enzyme-linked immunosorbent assay and a colloidal gold immunoassay. Food and Agricultural Immunology, 2018, 29, 1173-1183.	0.7	23

#	Article	IF	CITATIONS
109	Development of immunocolloidal strip for rapid detection of pyrimethanil. Food and Agricultural Immunology, 2019, 30, 1239-1252.	0.7	23
110	Recent Progress on Biomaterials Fighting against Viruses. Advanced Materials, 2021, 33, e2005424.	11.1	23
111	Facetâ€Ðependent Biodegradable Mn ₃ O ₄ Nanoparticles for Ameliorating Parkinson's Disease. Advanced Healthcare Materials, 2021, 10, e2101316.	3.9	23
112	Up-conversion fluorescence "off-on―switch based on heterogeneous core-satellite assembly for thrombin detection. Biosensors and Bioelectronics, 2015, 70, 372-375.	5.3	22
113	Development of a lateral flow immunoassay for the detection of total malachite green residues in fish tissues. Food and Agricultural Immunology, 2015, 26, 870-879.	0.7	22
114	MicroRNAâ€Directed Intracellular Selfâ€Assembly of Chiral Nanorod Dimers. Angewandte Chemie, 2018, 130, 10704-10708.	1.6	22
115	Development of a monoclonal antibody-based immunochromatographic assay for the detection of carbamazepine and carbamazepine-10, 11-epoxide. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1141, 122036.	1.2	22
116	Development of a fluorescent immunoassay strip for the rapid quantitative detection of cadmium in rice. Food and Agricultural Immunology, 2020, 31, 501-512.	0.7	22
117	Improved Reactive Oxygen Species Generation by Chiral Co ₃ O ₄ Supraparticles under Electromagnetic Fields. Angewandte Chemie - International Edition, 2021, 60, 18240-18246.	7.2	22
118	Immunochromatographic assays for ultrasensitive and high specific determination of enrofloxacin in milk, eggs, honey, and chicken meat. Journal of Dairy Science, 2022, 105, 1999-2010.	1.4	22
119	Development of IC-ELISA and immunochromatographic strip assay for the detection of flunixin meglumine in milk. Food and Agricultural Immunology, 2018, 29, 193-203.	0.7	21
120	Rapid colloidal gold immunochromatographic assay for the detection of SARS-CoV-2 total antibodies after vaccination. Journal of Materials Chemistry B, 2022, 10, 1786-1794.	2.9	21
121	SERS-active Au NR oligomer sensor for ultrasensitive detection of mercury ions. RSC Advances, 2015, 5, 81802-81807.	1.7	20
122	Immunochromatographic test strip for the rapid detection of tricaine in fish samples. Food and Agricultural Immunology, 2020, 31, 687-699.	0.7	20
123	Chirality of self-assembled metal–semiconductor nanostructures. Journal of Materials Chemistry C, 2014, 2, 2702-2706.	2.7	19
124	Rapid and sensitive detection of ochratoxin A in rice flour using a fluorescent microsphere immunochromatographic test strip assay. Food and Agricultural Immunology, 2020, 31, 563-574.	0.7	19
125	Synthesis of haptens and gold-based immunochromatographic paper sensor for vitamin B6 in energy drinks and dietary supplements. Nano Research, 2022, 15, 2479-2488.	5.8	19
126	Tailored Chiral Copper Selenide Nanochannels for Ultrasensitive Enantioselective Recognition and Detection. Angewandte Chemie - International Edition, 2021, 60, 24997-25004.	7.2	19

#	Article	IF	CITATIONS
127	An immunochromatographic assay for the rapid detection of oxadixyl in cucumber, tomato and wine samples. Food Chemistry, 2022, 379, 132131.	4.2	19
128	Ultrasensitive detection of lead ions based on a DNA-labelled DNAzyme sensor. Analytical Methods, 2015, 7, 662-666.	1.3	18
129	Development of an immunocolloidal strip for rapid detection of picoxystrobin. Food and Agricultural Immunology, 2020, 31, 711-722.	0.7	18
130	Gold nanoparticle-based immunochromatographic assay for detection Pseudomonas aeruginosa in water and food samples. Food Chemistry: X, 2021, 9, 100117.	1.8	18
131	A multiplex lateral flow immunochromatography assay for the quantitative detection of pyraclostrobin, myclobutanil, and kresoxim-methyl residues in wheat. Food Chemistry, 2022, 377, 131964.	4.2	18
132	Chiromagnetic Plasmonic Nanoassemblies with Magnetic Field Modulated Chiral Activity. Small, 2020, 16, e1905734.	5.2	16
133	Immuno-driven plasmonic oligomer sensor for the ultrasensitive detection of antibiotics. RSC Advances, 2013, 3, 17294.	1.7	15
134	Development and characterisation of an ultrasensitive monoclonal antibody for chloramphenicol. Food and Agricultural Immunology, 2015, 26, 440-450.	0.7	15
135	A fluorescence active gold nanorod–quantum dot core–satellite nanostructure for sub-attomolar tumor marker biosensing. RSC Advances, 2015, 5, 97898-97902.	1.7	14
136	Rapid detection of tulathromycin in pure milk and honey with an immunochromatographic test strip. Food and Agricultural Immunology, 2018, 29, 358-368.	0.7	14
137	Circular Dichroism-Active Interactions between Fipronil and Neuronal Cells. Environmental Science and Technology Letters, 2018, 5, 500-507.	3.9	14
138	Porous Cu _{<i>x</i>} Co _{<i>y</i>} S Supraparticles for Inâ€Vivo Telomerase Imaging and Reactive Oxygen Species Generation. Angewandte Chemie - International Edition, 2019, 58, 19067-19072.	7.2	14
139	Selfâ€Assembled Gold Arrays That Allow Rectification by Nanoscale Selectivity. Angewandte Chemie - International Edition, 2019, 58, 17418-17424.	7.2	14
140	Detection of triclabendazole and three metabolites in bovine muscle samples with a gold nanoparticle-based lateral flow immunoassay. Analytical Methods, 2019, 11, 5478-5486.	1.3	14
141	Multiple detection of 15 triazine herbicides by gold nanoparticle based-paper sensor. Nano Research, 2022, 15, 5483-5491.	5.8	14
142	Photoinduced elimination of senescent microglia cells <i>in vivo</i> by chiral gold nanoparticles. Chemical Science, 2022, 13, 6642-6654.	3.7	14
143	Self-Assembly of Earth-Abundant Supraparticles with Chiral Interstices for Enantioselective Photocatalysis. ACS Energy Letters, 0, , 1405-1412.	8.8	13
144	Rapid and sensitive detection of <i>tert</i> -butylhydroquinone in soybean oil using a gold-based paper sensor. Analyst, The, 2022, 147, 1906-1914.	1.7	13

#	Article	IF	CITATIONS
145	Ultrasensitive detection of seventeen chemicals simultaneously using paper-based sensors. Materials Chemistry Frontiers, 2018, 2, 1900-1910.	3.2	12
146	A gold nanoparticle based colorimetric sensor for the rapid detection of <i>Yersinia enterocolitica</i> serotype O:8 in food samples. Journal of Materials Chemistry B, 2022, 10, 909-914.	2.9	12
147	A sensitive lateral flow immunoassay for the multiple residues of five adamantanes. Food and Agricultural Immunology, 2019, 30, 647-661.	0.7	11
148	Lightâ€Induced Chiral Iron Copper Selenide Nanoparticles Prevent βâ€Amyloidopathy Inâ€Vivo. Angewandte Chemie, 2020, 132, 7197-7204.	1.6	11
149	Chiral Cu _x Co _y S Supraparticles Ameliorate Parkinson's Disease. CCS Chemistry, 2022, 4, 2440-2451.	4.6	11
150	Preparation of an anti-4,4′-dinitrocarbanilide monoclonal antibody and its application in an immunochromatographic assay for anticoccidial drugs. Food and Agricultural Immunology, 2018, 29, 1162-1172.	0.7	10
151	Mitochondriaâ€Targeting Plasmonic Spiky Nanorods Increase the Elimination of Aging Cells in Vivo. Angewandte Chemie, 2020, 132, 8776-8783.	1.6	10
152	Sandwich ELISA and immunochromatographic strip of Kunitz trypsin inhibitor using sensitive monoclonal antibodies. Food and Agricultural Immunology, 2016, 27, 772-782.	0.7	9
153	Quick, easy, cheap, effective, rugged and safe strategy for quantifying cadmium polluted rice. Food and Agricultural Immunology, 2016, 27, 783-795.	0.7	9
154	Europium nanosphere-based fluorescence strip sensor for ultrasensitive and quantitative determination of fumonisin B ₁ . Analytical Methods, 2020, 12, 5229-5235.	1.3	9
155	Chiral Cu _{<i>x</i>} Co _{<i>y</i>} S Nanoparticles under Magnetic Field and NIR Light to Eliminate Senescent Cells. Angewandte Chemie, 2020, 132, 14019-14026.	1.6	9
156	Magnetic Field Tuning Ionic Current Generated by Chiromagnetic Nanofilms. ACS Nano, 2022, 16, 11066-11075.	7.3	9
157	Self-limiting self-assembly of supraparticles for potential biological applications. Nanoscale, 2021, 13, 2302-2311.	2.8	8
158	Gold-based immunochromatographic assay strip for the detection of quinclorac in foods. Analyst, The, 2021, 146, 6831-6839.	1.7	8
159	Quantitative and rapid detection of spinosad and spinetoram by a gold nanoparticle-based immunostrip. Analytical Methods, 2022, 14, 2026-2034.	1.3	8
160	Gold Immunochromatography Assay for the Rapid Detection of Spiramycin in Milk and Beef Samples Based on a Monoclonal Antibody. Biotechnology Journal, 2020, 15, 1900224.	1.8	7
161	Ultrasensitive and simultaneous detection of 6 nonsteroidal anti-inflammatory drugs by colloidal gold strip sensor. Journal of Dairy Science, 2021, 104, 2529-2538.	1.4	7
162	Dimensional Surfaceâ€Enhanced Raman Scattering Nanostructures for MicroRNA Profiling. Small Structures, 2021, 2, 2000150.	6.9	7

#	Article	IF	CITATIONS
163	Gold-based lateral-flow strip for the detection of penconazole in watermelon and cucumber samples. Food Quality and Safety, 2022, 6, .	0.6	7
164	A gold-based immunochromatographic strip for the detection of sirolimus in human whole blood. Analyst, The, 2022, 147, 1394-1402.	1.7	7
165	Rapid detection of penbutolol in pig urine using an immunochromatographic test strip. Food and Agricultural Immunology, 2018, 29, 1126-1136.	0.7	6
166	Gold-based immunochromatographic strip assay for detecting dimethomorph in vegetables. New Journal of Chemistry, 2022, 46, 3882-3888.	1.4	6
167	Immunological quantitative detection of dicofol in medicinal materials. Analyst, The, 2022, 147, 3478-3485.	1.7	6
168	Biosensors: SERS Encoded Silver Pyramids for Attomolar Detection of Multiplexed Disease Biomarkers (Adv. Mater. 10/2015). Advanced Materials, 2015, 27, 1799-1799.	11.1	5
169	An ic-ELISA and immunochromatographic strip assay for the detection of 2,4-dichlorophenoxyacetic acid in bean sprouts and cabbage. Journal of Pharmaceutical and Biomedical Analysis, 2022, 209, 114524.	1.4	5
170	Mercury–DNA interaction based detection of mercury ions by DNA amplification with high sensitivity and selectivity. Food and Agricultural Immunology, 2015, 26, 512-520.	0.7	4
171	Phototherapy: Hierarchical Plasmonic Nanorods and Upconversion Core–Satellite Nanoassemblies for Multimodal Imagingâ€Guided Combination Phototherapy (Adv. Mater. 5/2016). Advanced Materials, 2016, 28, 897-897.	11.1	4
172	Chiral Selfâ€Assembled Film from Semiconductor Nanorods with Ultraâ€strong Circularly Polarized Luminescence. Angewandte Chemie, 2021, 133, 26480.	1.6	4
173	Tailored Chiral Copper Selenide Nanochannels for Ultrasensitive Enantioselective Recognition and Detection. Angewandte Chemie, 2021, 133, 25201-25208.	1.6	3
174	A colloidal gold immunochromatographic strip assay for the rapid detection of <i>Shigella</i> in milk and meat products. New Journal of Chemistry, 2021, 46, 103-109.	1.4	3
175	Secretory expression and purification of recombinant PLA2R epitopes for the detection of anti-PLA2R autoantibody in serum. Analyst, The, 2022, 147, 965-974.	1.7	3
176	Nanoparticles: Gold Core-DNA-Silver Shell Nanoparticles with Intense Plasmonic Chiroptical Activities (Adv. Funct. Mater. 6/2015). Advanced Functional Materials, 2015, 25, 987-987.	7.8	2
177	An ultrasensitive fluorescent paper sensor for fast screening of berberine. New Journal of Chemistry, 2021, 45, 13080-13087.	1.4	2
178	Sensitive immunochromatographic assay for the detection of the dimethachlone fungicide in tomatoes and lettuces. New Journal of Chemistry, 2022, 46, 8592-8600.	1.4	2
179	Gold nanoparticle-based lateral flow immunoassay for the rapid detection of flumetralin in orange. Analyst, The, 2022, 147, 3684-3691.	1.7	2
180	Cell Imaging: Photoactive Hybrid AuNRâ€Pt@Ag ₂ S Core–Satellite Nanostructures for Nearâ€Infrared Quantitive Cell Imaging (Adv. Funct. Mater. 46/2017). Advanced Functional Materials, 2017, 27, .	7.8	1

#	Article	IF	CITATIONS
181	Improved Reactive Oxygen Species Generation by Chiral Co 3 O 4 Supraparticles under Electromagnetic Fields. Angewandte Chemie, 2021, 133, 18388-18394.	1.6	1

182 Titelbild: MicroRNAâ \in Directed Intracellular Selfâ \in Assembly of Chiral Nanorod Dimers (Angew. Chem.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 1.6

183	Frontispiece: Circularly Polarized Light Triggers Biosensing Based on Chiral Assemblies. Chemistry - A European Journal, 2019, 25, .	1.7	0
184	Ultrasmall Copper (I) Sulfide Nanoparticles Prevent Hepatitisâ€B Virus Infection. Angewandte Chemie, 2021, 133, 13183-13190.	1.6	0