Ting-Zhu Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2133052/publications.pdf

Version: 2024-02-01

52	1,807	20	42
papers	citations	h-index	g-index
55	55	55	1381 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Thermal behavior of AlGaN-based deep-UV LEDs. Optics Express, 2022, 30, 16827.	1.7	6
2	An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities. Opto-Electronic Advances, 2022, 5, 210123-210123.	6.4	20
3	The impacts of sidewall passivation via atomic layer deposition on GaN-based flip-chip blue mini-LEDs. Journal Physics D: Applied Physics, 2022, 55, 374001.	1.3	10
4	A review on the low external quantum efficiency and the remedies for GaN-based micro-LEDs. Journal Physics D: Applied Physics, 2021, 54, 153002.	1.3	42
5	Quantum-dot-based full-color micro-LED displays. Semiconductors and Semimetals, 2021, , 173-201.	0.4	3
6	All-inorganic encapsulation for remarkably stable cesium lead halide perovskite nanocrystals: toward full-color display applications. Journal of Materials Chemistry C, 2021, 9, 12303-12313.	2.7	25
7	Remote Online Two-Step Stress Lifetime Acceleration Test System for Ultraviolet Light-Emitting Diodes. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-7.	2.4	3
8	Two-Dimensional Pixel-Level Photometric and Colorimetric Mass-Distribution Measurement of Micro-Displays. IEEE Electron Device Letters, 2021, 42, 720-722.	2.2	6
9	Perspectives on UVC LED: Its Progress and Application. Photonics, 2021, 8, 196.	0.9	51
10	On the exciton-assisted radiative recombination via impurity trap levels in AlGaN deep ultraviolet light-emitting diodes. Nanotechnology, 2021, 32, 375204.	1.3	3
11	18.2: Invited Paper: Semipolar Micro‣ED for Fullâ€color Display and Visible Light Communication. Digest of Technical Papers SID International Symposium, 2021, 52, 239-241.	0.1	0
12	Highly stable full-color display device with VLC application potential using semipolar \hat{l}_4 LEDs and all-inorganic encapsulated perovskite nanocrystal. Photonics Research, 2021, 9, 2132.	3.4	24
13	CsPbBr ₃ perovskite quantum-dot paper exhibiting a highest 3  dB bandwidth and realizing a flexible white-light system for visible-light communication. Photonics Research, 2021, 9, 2341.	3.4	30
14	Remarkable Blackâ€Phase Robustness of CsPbl ₃ Nanocrystals Sealed in Solid SiO ₂ /AlO _x Subâ€Micron Particles. Small, 2021, 17, e2103510.	5.2	20
15	Enhanced external quantum efficiencies of AlGaN-based deep-UV LEDs using reflective passivation layer. Optics Express, 2021, 29, 37835.	1.7	17
16	Advanced Atomic Layer Deposition Technologies for Micro-LEDs and VCSELs. Nanoscale Research Letters, 2021, 16, 164.	3.1	12
17	Investigation on Circadian Action and Color Quality in Laser-Based Illuminant for General Lighting and Display. IEEE Photonics Journal, 2020, 12, 1-9.	1.0	10
18	The Stability of Metal Halide Perovskite Nanocrystals—A Key Issue for the Application on Quantum-Dot-Based Micro Light-Emitting Diodes Display. Nanomaterials, 2020, 10, 1375.	1.9	36

#	Article	lF	Citations
19	Micro-LED as a Promising Candidate for High-Speed Visible Light Communication. Applied Sciences (Switzerland), 2020, 10, 7384.	1.3	69
20	Multichannel Optical Fiber Spectral and Imaging System for Pixel-Level Measurement of Display. IEEE Photonics Technology Letters, 2020, 32, 271-274.	1.3	0
21	Advances in Quantum-Dot-Based Displays. Nanomaterials, 2020, 10, 1327.	1.9	72
22	Investigation on Key Parameters in the Fabrication of Stamps for Transfer Printing of Micro Devices. Applied Sciences (Switzerland), 2020, 10, 4604.	1.3	3
23	High-Bandwidth Green Semipolar (20–21) InGaN/GaN Micro Light-Emitting Diodes for Visible Light Communication. ACS Photonics, 2020, 7, 2228-2235.	3.2	99
24	Giant Optical Anisotropy of Perovskite Nanowire Array Films. Advanced Functional Materials, 2020, 30, 1909275.	7.8	89
25	Temperature-Dependent Carrier Recombination and Efficiency Droop of AlGaN Deep Ultraviolet Light-Emitting Diodes. IEEE Photonics Journal, 2020, 12, 1-8.	1.0	10
26	Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist. Photonics Research, 2020, 8, 630.	3.4	116
27	Stability of Hybrid Organic-Inorganic Perovskite CH3NH3PbBr3 Nanocrystals under Co-Stresses of UV Light Illumination and Temperature. Nanomaterials, 2019, 9, 1158.	1.9	8
28	20.1: Invited Paper: Monolithic Fullâ€color Quantum Dot Nanoring Micro LEDs with Improved Efficiency. Digest of Technical Papers SID International Symposium, 2019, 50, 191-193.	0.1	1
29	Highly Efficient and Stable White Lightâ€Emitting Diodes Using Perovskite Quantum Dot Paper. Advanced Science, 2019, 6, 1902230.	5.6	56
30	Ultrawide Color Gamut Perovskite and CdSe/ZnS Quantum-Dots-Based White Light-Emitting Diode with High Luminous Efficiency. Nanomaterials, 2019, 9, 1314.	1.9	20
31	Design and Fabrication of the Reliable GaN Based Vertical-Cavity Surface-Emitting Laser via Tunnel Junction. Crystals, 2019, 9, 187.	1.0	11
32	Origins of Inhomogeneous Light Emission From GaN-Based Flip-Chip Green Micro-LEDs. IEEE Electron Device Letters, 2019, 40, 1132-1135.	2.2	12
33	Ultra-High Light Extraction Efficiency and Ultra-Thin Mini-LED Solution by Freeform Surface Chip Scale Package Array. Crystals, 2019, 9, 202.	1.0	20
34	A Novel Liquid Packaging Structure of Deep-Ultraviolet Light-Emitting Diodes to Enhance the Light-Extraction Efficiency. Crystals, 2019, 9, 203.	1.0	19
35	Assessment and Optimization of the Circadian Performance of Smartphone-Based Virtual Reality Displays. IEEE Journal of the Electron Devices Society, 2019, 7, 358-367.	1.2	9
36	Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photonics Research, 2019, 7, 416.	3.4	116

#	Article	IF	Citations
37	The Impact of Luminous Properties of Red, Green, and Blue Mini-LEDs on the Color Gamut. IEEE Transactions on Electron Devices, 2019, 66, 2263-2268.	1.6	35
38	Investigation on Three-Hump Phosphor-Coated White Light-Emitting Diodes for Healthy Lighting by Genetic Algorithm. IEEE Photonics Journal, 2019, 11, 1-10.	1.0	17
39	Interplay of carriers and deep-level recombination centers of 275-nm light-emitting diodes — Analysis on the parasitic peaks over wide ranges of temperature and injection density. Optics Express, 2019, 27, A1060.	1.7	14
40	Hybrid-type white LEDs based on inorganic halide perovskite QDs: candidates for wide color gamut display backlights. Photonics Research, 2019, 7, 579.	3.4	46
41	Research on a Camera-Based Microscopic Imaging System to Inspect the Surface Luminance of the Micro-LED Array. IEEE Access, 2018, 6, 51329-51336.	2.6	24
42	Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology. Applied Sciences (Switzerland), 2018, 8, 1557.	1.3	498
43	Analyses of multi-color plant-growth light sources in achieving maximum photosynthesis efficiencies with enhanced color qualities. Optics Express, 2018, 26, 4135.	1.7	20
44	Multi-Azimuth Failure Mechanisms in Phosphor-Coated White LEDs by Current Aging Stresses. Applied Sciences (Switzerland), 2018, 8, 610.	1.3	0
45	An introduction on microscopic-hyperspectral imaging for GaN-based LED investigation. , 2018, , .		2
46	Determining Junction Temperature of LEDs by the Relative Reflected Intensity of the Incident Exciting Light. IEEE Transactions on Electron Devices, 2017, 64, 2257-2260.	1.6	8
47	A Bipolar-Pulse Voltage Method for Junction Temperature Measurement of Alternating Current Light-Emitting Diodes. IEEE Transactions on Electron Devices, 2017, 64, 2326-2329.	1.6	13
48	Improvements of mesopic luminance for light-emitting-diode-based outdoor light sources via tuning scotopic/photopic ratios. Optics Express, 2017, 25, 4887.	1.7	11
49	Multi-function indoor light sources based on light-emitting diodes–a solution for healthy lighting. Optics Express, 2016, 24, 24401.	1.7	34
50	Study on color-tunable phosphor-coated white light-emitting diodes with high S/P ratios. AIP Advances, 2016, 6, 035127.	0.6	7
51	Spectral Optimization of Three-Primary LEDs by Considering the Circadian Action Factor. IEEE Photonics Journal, 2016, 8, 1-9.	1.0	22
52	Evolution of crystal imperfections during current-stress ageing tests of green InGaN light-emitting diodes. Applied Physics Express, 2016, 9, 092101.	1.1	6