Junhua Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/213299/publications.pdf Version: 2024-02-01

Ιπνητία Ζηνο

#	Article	IF	CITATIONS
1	Real-Time Corporate Carbon Footprint Estimation Methodology Based on Appliance Identification. IEEE Transactions on Industrial Informatics, 2023, 19, 1401-1412.	7.2	16
2	Adaptive Integrated Planning of Electricity Networks and Fast Charging Stations Under Electric Vehicle Diffusion. IEEE Transactions on Power Systems, 2023, 38, 499-513.	4.6	12
3	Interpretable Hybrid Experimental Learning for Trading Behavior Modeling in Electricity Market. IEEE Transactions on Power Systems, 2023, 38, 1022-1032.	4.6	2
4	Customized Rebate Pricing Mechanism for Virtual Power Plants Using a Hierarchical Game and Reinforcement Learning Approach. IEEE Transactions on Smart Grid, 2023, 14, 424-439.	6.2	10
5	Flexible Integrated Network Planning Considering Echelon Utilization of Second Life of Used Electric Vehicle Batteries. IEEE Transactions on Transportation Electrification, 2022, 8, 263-276.	5.3	17
6	Individualized Pricing of Energy Storage Sharing Based on Discount Sensitivity. IEEE Transactions on Industrial Informatics, 2022, 18, 4642-4653.	7.2	16
7	A data-driven scheduling model of virtual power plant using Wasserstein distributionally robust optimization. International Journal of Electrical Power and Energy Systems, 2022, 137, 107801.	3.3	23
8	Integrated optimization algorithm: A metaheuristic approach for complicated optimization. Information Sciences, 2022, 586, 424-449.	4.0	19
9	An Inertia-Based Data Recovery Scheme for False Data Injection Attack. IEEE Transactions on Industrial Informatics, 2022, 18, 7814-7823.	7.2	21
10	Data-driven on-demand energy supplement planning for electric vehicles considering multi-charging/swapping services. Applied Energy, 2022, 311, 118632.	5.1	12
11	Coordinated Real-Time Voltage Control in Active Distribution Networks: An Incentive-Based Fairness Approach. IEEE Transactions on Smart Grid, 2022, 13, 2650-2663.	6.2	17
12	Distributed Optimal Voltage Control and Berth Allocation of All-Electric Ships in Seaport Microgrids. IEEE Transactions on Smart Grid, 2022, 13, 2664-2674.	6.2	13
13	Fedâ€NILM: A federated learningâ€based nonâ€intrusive load monitoring method for privacyâ€protection. Energy Conversion and Economics, 2022, 3, 51-60.	1.9	6
14	Market-Based Resource Allocation of Distributed Cloud Computing Services: Virtual Energy Storage Systems. IEEE Internet of Things Journal, 2022, 9, 22811-22821.	5.5	6
15	Carbon-Oriented Electricity Network Planning and Transformation. IEEE Transactions on Power Systems, 2021, 36, 1034-1048.	4.6	50
16	Integrated Electricity and Hydrogen Energy Sharing in Coupled Energy Systems. IEEE Transactions on Smart Grid, 2021, 12, 1149-1162.	6.2	85
17	Deep reinforcement learning based home energy management system with devices operational dependencies. International Journal of Machine Learning and Cybernetics, 2021, 12, 1687-1703.	2.3	13
18	Hybrid-Model-Based Deep Reinforcement Learning for Heating, Ventilation, and Air-Conditioning Control. Frontiers in Energy Research, 2021, 8, .	1.2	18

Junhua Zhao

#	Article	IF	CITATIONS
19	Data mining for energy systems: Review and prospect. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2021, 11, e1406.	4.6	2
20	Data-Driven Risk Preference Analysis in Day-Ahead Electricity Market. IEEE Transactions on Smart Grid, 2021, 12, 2508-2517.	6.2	14
21	Geometry optimization of solar thermoelectric generator under different operating conditions via Taguchi method. Energy Conversion and Management, 2021, 238, 114158.	4.4	34
22	Bargaining Game-Based Profit Allocation of Virtual Power Plant in Frequency Regulation Market Considering Battery Cycle Life. IEEE Transactions on Smart Grid, 2021, 12, 2913-2928.	6.2	62
23	Trading-oriented battery energy storage planning for distribution market. International Journal of Electrical Power and Energy Systems, 2021, 129, 106848.	3.3	9
24	Optimal Local Volt/Var Control for Photovoltaic Inverters in Active Distribution Networks. IEEE Transactions on Power Systems, 2021, 36, 5756-5766.	4.6	40
25	Electricity-consumption data reveals the economic impact and industry recovery during the pandemic. Scientific Reports, 2021, 11, 19960.	1.6	11
26	Hybrid Experimental Learning on Trading Behavior Analysis in Electricity Markets. , 2021, , .		0
27	Cooperative Wind Farm Control with Hybrid-Model-Based Deep Deterministic Policy Gradient and Model Selection. , 2021, , .		0
28	A Practical Solution for Non-Intrusive Type II Load Monitoring Based on Deep Learning and Post-Processing. IEEE Transactions on Smart Grid, 2020, 11, 148-160.	6.2	111
29	A Hybrid Method for Electric Spring Control Based on Data and Knowledge Integration. IEEE Transactions on Smart Grid, 2020, 11, 2303-2312.	6.2	11
30	Assessing the impacts of largeâ€scale offshore wind power in Southern China. Energy Conversion and Economics, 2020, 1, 58-70.	1.9	5
31	Distributed Energy-Sharing Strategy for Peer-to-Peer Microgrid System. Journal of Energy Engineering - ASCE, 2020, 146, .	1.0	5
32	Cooperative Wind Farm Control With Deep Reinforcement Learning and Knowledge-Assisted Learning. IEEE Transactions on Industrial Informatics, 2020, 16, 6912-6921.	7.2	86
33	Carbon-Oriented Operational Planning in Coupled Electricity and Emission Trading Markets. IEEE Transactions on Power Systems, 2020, 35, 3145-3157.	4.6	111
34	Super Resolution Perception for Improving Data Completeness in Smart Grid State Estimation. Engineering, 2020, 6, 789-800.	3.2	22
35	Super Resolution Perception for Smart Meter Data. Information Sciences, 2020, 526, 263-273.	4.0	32
36	A Real-Time Estimation Framework of Carbon Emissions in Steel Plants Based on Load Identification. ,		5

JUNHUA ZHAO

#	Article	IF	CITATIONS
37	A Framework for Cyber-Topology Attacks: Line-Switching and New Attack Scenarios. IEEE Transactions on Smart Grid, 2019, 10, 1704-1712.	6.2	77
38	A Distribution Market Clearing Mechanism for Renewable Generation Units With Zero Marginal Costs. IEEE Transactions on Industrial Informatics, 2019, 15, 4775-4787.	7.2	29
39	Gas Generation Portfolio Management Strategy Based on Financial Derivatives: Options. , 2019, , .		3
40	A Hybrid Data-Driven Method for Online Power System Dynamic Security Assessment with Incomplete PMU Measurements. , 2019, , .		4
41	The Economic Impacts of Household Level Smart Meter Manipulation Attack. , 2019, , .		0
42	Distributed Blockchain-Based Data Protection Framework for Modern Power Systems Against Cyber Attacks. IEEE Transactions on Smart Grid, 2019, 10, 3162-3173.	6.2	272
43	A Model of Customizing Electricity Retail Prices Based on Load Profile Clustering Analysis. IEEE Transactions on Smart Grid, 2019, 10, 3374-3386.	6.2	103
44	Adaptive algorithm for rapidly optimising the generatorâ€ŧripping control. Journal of Engineering, 2019, 2019, 3039-3045.	0.6	1
45	An Extensible Approach for Non-Intrusive Load Disaggregation With Smart Meter Data. IEEE Transactions on Smart Grid, 2018, 9, 3362-3372.	6.2	139
46	Distributed Robust Control Strategy of Grid-Connected Inverters for Energy Storage Systems' State-of-Charge Balancing. IEEE Transactions on Smart Grid, 2018, 9, 5907-5917.	6.2	35
47	Distributionally Robust Optimal Bidding of Controllable Load Aggregators in the Electricity Market. IEEE Transactions on Power Systems, 2018, 33, 1089-1091.	4.6	39
48	Decision-Making for Electricity Retailers: A Brief Survey. IEEE Transactions on Smart Grid, 2018, 9, 4140-4153.	6.2	102
49	Optimal Scheduling for Prosumers in Coupled Transactive Power and Gas Systems. IEEE Transactions on Power Systems, 2018, 33, 1970-1980.	4.6	105
50	Optimal Operation of Battery Energy Storage System Considering Distribution System Uncertainty. IEEE Transactions on Sustainable Energy, 2018, 9, 1051-1060.	5.9	87
51	A Framework of Customizing Electricity Retail Prices. IEEE Transactions on Power Systems, 2018, 33, 2415-2428.	4.6	50
52	Optimal integration of MBESSs/SBESSs in distribution systems with renewables. IET Renewable Power Generation, 2018, 12, 1172-1179.	1.7	19
53	Small-Signal Performance of Type 4 Wind Turbine Generator-Based Clusters in Power Systems. Energies, 2018, 11, 1486.	1.6	3
54	Optimal allocation of BESS and MT in a microgrid. IET Generation, Transmission and Distribution, 2018, 12, 1988-1997.	1.4	52

4

JUNHUA ΖΗΑΟ

#	Article	IF	CITATIONS
55	Multi-agent modeling and analysis of EV users' travel willingness based on an integrated causal/statistical/behavioral model. Journal of Modern Power Systems and Clean Energy, 2018, 6, 1255-1263.	3.3	8
56	A Review of False Data Injection Attacks Against Modern Power Systems. IEEE Transactions on Smart Grid, 2017, 8, 1630-1638.	6.2	652
57	Probabilistic transmission expansion planning for increasing wind power penetration. IET Renewable Power Generation, 2017, 11, 837-845.	1.7	17
58	Nonâ€intrusive energy saving appliance recommender system for smart grid residential users. IET Generation, Transmission and Distribution, 2017, 11, 1786-1793.	1.4	57
59	Improved Cycle Control and Sizing Scheme for Wind Energy Storage System Based on Multiobjective Optimization. IEEE Transactions on Sustainable Energy, 2017, 8, 966-977.	5.9	26
60	Power network planning considering tradeâ€off between cost, risk, and reliability. International Transactions on Electrical Energy Systems, 2017, 27, e2462.	1.2	6
61	Decompositionâ€based approach to riskâ€averse transmission expansion planning considering wind power integration. IET Generation, Transmission and Distribution, 2017, 11, 3458-3466.	1.4	10
62	Networked Control of Electric Vehicles for Power System Frequency Regulation with Random Communication Time Delay. Energies, 2017, 10, 621.	1.6	8
63	Two-Stage Coordinated Operational Strategy for Distributed Energy Resources Considering Wind Power Curtailment Penalty Cost. Energies, 2017, 10, 965.	1.6	14
64	Flexible Multi-Objective Transmission Expansion Planning with Adjustable Risk Aversion. Energies, 2017, 10, 1036.	1.6	4
65	Natural aggregation algorithm: A new efficient metaheuristic tool for power system optimizations. , 2016, , .		29
66	A new metaheuristic algorithm for real-parameter optimization: Natural aggregation algorithm. , 2016, , .		50
67	Controlled islanding schemes for interconnected power systems based on coherent generator group identification and wide-area measurements. Journal of Modern Power Systems and Clean Energy, 2016, 4, 440-453.	3.3	25
68	Impact analysis of false data injection attacks on power system static security assessment. Journal of Modern Power Systems and Clean Energy, 2016, 4, 496-505.	3.3	58
69	Cloud-Based Information Infrastructure for Next-Generation Power Grid: Conception, Architecture, and Applications. IEEE Transactions on Smart Grid, 2016, 7, 1896-1912.	6.2	77
70	A risk management model for carbon constrained coal inventory optimization. , 2015, , .		1
71	Complex dynamics and chaos control of electricity markets with heterogeneous expectations. International Transactions on Electrical Energy Systems, 2014, 24, 1047-1064.	1.2	4
72	Power system fault diagnosis based on history driven differential evolution and stochastic time domain simulation. Information Sciences, 2014, 275, 13-29.	4.0	60