John E Drake

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2132805/publications.pdf Version: 2024-02-01

ΙΟΗΝ Ε ΠΡΛΚΕ

#	Article	IF	CITATIONS
1	Wholeâ€tree mesophyll conductance reconciles isotopic and gasâ€exchange estimates of waterâ€use efficiency. New Phytologist, 2021, 229, 2535-2547.	7.3	13
2	Concurrent Measurements of Soil and Ecosystem Respiration in a Mature Eucalypt Woodland: Advantages, Lessons, and Questions. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006221.	3.0	3
3	The temperature optima for tree seedling photosynthesis and growth depend on water inputs. Global Change Biology, 2020, 26, 2544-2560.	9.5	42
4	No evidence of homeostatic regulation of leaf temperature in <i>Eucalyptus parramattensis</i> trees: integration of CO ₂ flux and oxygen isotope methodologies. New Phytologist, 2020, 228, 1511-1523.	7.3	18
5	No evidence for triose phosphate limitation of lightâ€saturated leaf photosynthesis under current atmospheric CO 2 concentration. Plant, Cell and Environment, 2019, 42, 3241-3252.	5.7	25
6	Climate warming and tree carbon use efficiency in a wholeâ€ŧree ¹³ <scp>CO</scp> ₂ tracer study. New Phytologist, 2019, 222, 1313-1324.	7.3	30
7	Range size and growth temperature influence <i>Eucalyptus</i> species responses to an experimental heatwave. Clobal Change Biology, 2019, 25, 1665-1684.	9.5	44
8	Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytologist, 2019, 222, 768-784.	7.3	171
9	Responses of respiration in the light to warming in fieldâ€grown trees: a comparison of the thermal sensitivity of the Kok and Laisk methods. New Phytologist, 2019, 222, 132-143.	7.3	32
10	The partitioning of gross primary production for young <i>Eucalyptus tereticornis</i> trees under experimental warming and altered water availability. New Phytologist, 2019, 222, 1298-1312.	7.3	34
11	Traits and trade-offs in whole-tree hydraulic architecture along the vertical axis of Eucalyptus grandis. Annals of Botany, 2018, 121, 129-141.	2.9	40
12	Intraspecies variation in a widely distributed tree species regulates the responses of soil microbiome to different temperature regimes. Environmental Microbiology Reports, 2018, 10, 167-178.	2.4	8
13	Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Global Change Biology, 2018, 24, 2390-2402.	9.5	242
14	Photosynthetic capacity and leaf nitrogen decline along a controlled climate gradient in provenances of two widely distributed <i>Eucalyptus</i> species. Global Change Biology, 2018, 24, 4626-4644.	9.5	47
15	Photosynthesis and carbon allocation are both important predictors of genotype productivity responses to elevated CO2 in Eucalyptus camaldulensis. Tree Physiology, 2018, 38, 1286-1301.	3.1	21
16	Three years of soil respiration in a mature eucalypt woodland exposed to atmospheric CO2 enrichment. Biogeochemistry, 2018, 139, 85-101.	3.5	17
17	Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nature Climate Change, 2017, 7, 279-282.	18.8	198
18	A common thermal niche among geographically diverse populations of the widely distributed tree species <i>Eucalyptus tereticornis</i> : No evidence for adaptation to climateâ€ofâ€origin. Global Change Biology, 2017, 23, 5069-5082.	9.5	38

John E Drake

#	Article	IF	CITATIONS
19	Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: A comparison of model formulations. Agricultural and Forest Meteorology, 2017, 247, 454-466.	4.8	91
20	Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in <i>Eucalyptus tereticornis</i> . New Phytologist, 2016, 212, 354-367.	7.3	88
21	Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis?. New Phytologist, 2016, 211, 850-863.	7.3	82
22	Using models to guide field experiments: <i>a priori</i> predictions for the <scp>CO</scp> ₂ response of a nutrient―and waterâ€imited native Eucalypt woodland. Global Change Biology, 2016, 22, 2834-2851.	9.5	77
23	Shortâ€ŧerm carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric <scp>CO</scp> ₂ concentration. Global Change Biology, 2016, 22, 380-390.	9.5	55
24	The capacity to cope with climate warming declines from temperate to tropical latitudes in two widely distributed <i>Eucalyptus</i> species. Global Change Biology, 2015, 21, 459-472.	9.5	118
25	Optimal stomatal behaviour around the world. Nature Climate Change, 2015, 5, 459-464.	18.8	397
26	Stoichiometry constrains microbial response to root exudation- insights from a model and a field experiment in a temperate forest. Biogeosciences, 2013, 10, 821-838.	3.3	197
27	Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soils. Biogeochemistry, 2013, 115, 65-76.	3.5	176
28	Seasonal plasticity in the temperature sensitivity of microbial activity in three temperate forest soils. Ecosphere, 2013, 4, 1-21.	2.2	24
29	Soil respiration in a northeastern US temperate forest: a 22â€year synthesis. Ecosphere, 2013, 4, 1-28.	2.2	83
30	Trenching reduces soil heterotrophic activity in a loblolly pine (Pinus taeda) forest exposed to elevated atmospheric [CO 2] and N fertilization. Agricultural and Forest Meteorology, 2012, 165, 43-52.	4.8	27
31	Impact of a reduced winter snowpack on litter arthropod abundance and diversity in a northern hardwood forest ecosystem. Biology and Fertility of Soils, 2012, 48, 413-424.	4.3	41
32	Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecology Letters, 2011, 14, 349-357.	6.4	374
33	Mechanisms of age-related changes in forest production: the influence of physiological and successional changes. Clobal Change Biology, 2011, 17, 1522-1535.	9.5	87
34	Hydraulic limitation not declining nitrogen availability causes the ageâ€related photosynthetic decline in loblolly pine (<i>Pinus taeda</i> L.). Plant, Cell and Environment, 2010, 33, 1756-1766.	5.7	67
35	Fineâ€root respiration in a loblolly pine (<i>Pinus taeda</i> L.) forest exposed to elevated CO ₂ and N fertilization. Plant, Cell and Environment, 2008, 31, 1663-1672.	5.7	60
36	Forest carbon use efficiency: is respiration a constant fraction of gross primary production?. Global Change Biology, 2007, 13, 1157-1167.	9.5	379

#	Article	IF	CITATIONS
37	Oxalate oxidase transgene expression in American chestnut leaves has little effect on photosynthetic or respiratory physiology. New Forests, 0, , 1.	1.7	2