
Bruce A Molitoris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2132725/publications.pdf Version: 2024-02-01

RRUCE A MOUTORIS

#	Article	IF	CITATIONS
1	Intravital Multiphoton Microscopy as a Tool for Studying Renal Physiology, Pathophysiology and Therapeutics. Frontiers in Physiology, 2022, 13, 827280.	1.3	1
2	Using 2-Photon Microscopy to Quantify the Effects of Chronic Unilateral Ureteral Obstruction on Glomerular Processes. Journal of Visualized Experiments, 2022, , .	0.2	0
3	Albumin uptake and processing by the proximal tubule: physiological, pathological, and therapeutic implications. Physiological Reviews, 2022, 102, 1625-1667.	13.1	45
4	Discordance between estimated and measured changes in plasma volume among patients with acute heart failure. ESC Heart Failure, 2022, 9, 66-76.	1.4	7
5	Response to Letter to the editor regarding â€ [~] Discordance between estimated and measured changes in plasma volume among patients with acute heart failure'. ESC Heart Failure, 2022, , .	1.4	1
6	Editorial: Proceedings of the 2021 Indiana O'Brien Center Microscopy Workshop. Frontiers in Physiology, 2022, 13, 891526.	1.3	0
7	Low-Flow Acute Kidney Injury. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 1039-1049.	2.2	16
8	Mechanism of how carbamylation reduces albumin binding to FcRn contributing to increased vascular clearance. American Journal of Physiology - Renal Physiology, 2021, 320, F114-F129.	1.3	11
9	The Indiana O'Brien Center for Advanced Renal Microscopic Analysis. American Journal of Physiology - Renal Physiology, 2021, 320, F671-F682.	1.3	8
10	Serum creatinine and cystatin Câ€based estimates of glomerular filtration rate are misleading in acute heart failure. ESC Heart Failure, 2021, 8, 3070-3081.	1.4	11
11	Novel CRISPR/Cas9 Munich Wistar Frömter rat model carrying diseaseâ€causing mutant Actn4 demonstrates saltâ€sensitive hypertension. FASEB Journal, 2021, 35, .	0.2	Ο
12	Teprasiran, a Small Interfering RNA, for the Prevention of Acute Kidney Injury in High-Risk Patients Undergoing Cardiac Surgery: A Randomized Clinical Study. Circulation, 2021, 144, 1133-1144.	1.6	42
13	Altered O-glycomes of Renal Brush-Border Membrane in Model Rats with Chronic Kidney Diseases. Biomolecules, 2021, 11, 1560.	1.8	5
14	Changes in the Expression of Renal Brush Border Membrane N-Glycome in Model Rats with Chronic Kidney Diseases. Biomolecules, 2021, 11, 1677.	1.8	4
15	Immunotoxin SS1P is rapidly removed by proximal tubule cells of kidney, whose damage contributes to albumin loss in urine. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6086-6091.	3.3	13
16	Real-time glomerular filtration rate: improving sensitivity, accuracy and prognostic value in acute kidney injury. Current Opinion in Critical Care, 2020, 26, 549-555.	1.6	11
17	Conditional Myh9 and Myh10 inactivation in adult mouse renal epithelium results in progressive kidney disease. JCI Insight, 2020, 5, .	2.3	10
18	Kidney Mentoring and Assessment Program for Students: a guide for engaging medical students in nephrology. CKJ: Clinical Kidney Journal, 2019, 12, 761-766.	1.4	9

BRUCE A MOLITORIS

#	Article	IF	CITATIONS
19	Application of physiological shear stress to renal tubular epithelial cells. Methods in Cell Biology, 2019, 153, 43-67.	0.5	12
20	Beyond Biomarkers: Machine Learning in Diagnosing Acute Kidney Injury. Mayo Clinic Proceedings, 2019, 94, 748-750.	1.4	10
21	Fluorescent Imaging and Microscopy for Dynamic Processes in Rats. Methods in Molecular Biology, 2019, 2018, 151-175.	0.4	8
22	The Distribution of Blood in Renal Glomerular Capillaries Is a New Physiological Parameter, Which Is Affected by Diabetes and ACEâ€inhibition. FASEB Journal, 2019, 33, 748.11.	0.2	1
23	Exogenous Gene Transmission of Isocitrate Dehydrogenase 2 Mimics Ischemic Preconditioning Protection. Journal of the American Society of Nephrology: JASN, 2018, 29, 1154-1164.	3.0	29
24	Protective vascular coagulation in response to bacterial infection of the kidney is regulated by bacterial lipid A and host CD147. Pathogens and Disease, 2018, 76, .	0.8	17
25	Protective vascular coagulation in response to bacterial infection of the kidney is regulated by bacterial lipid A and host CD147. Pathogens and Disease, 2018, , .	0.8	16
26	A Novel Method for Rapid Bedside Measurement of GFR. Journal of the American Society of Nephrology: JASN, 2018, 29, 1609-1613.	3.0	50
27	Novel role(s) for Nonmuscle Myosin 2 isoforms Myh9 and Myh10 in renal epithelial cells and tubular disease FASEB Journal, 2018, 32, lb447.	0.2	0
28	Inhibition of αvβ5 Integrin Attenuates Vascular Permeability and Protects against Renal Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology: JASN, 2017, 28, 1741-1752.	3.0	31
29	Hydrodynamic Isotonic Fluid Delivery Ameliorates Moderate-to-Severe Ischemia-Reperfusion Injury in Rat Kidneys. Journal of the American Society of Nephrology: JASN, 2017, 28, 2081-2092.	3.0	31
30	Rethinking CKD Evaluation: Should We Be Quantifying Basal or Stimulated GFR to Maximize Precision and Sensitivity?. American Journal of Kidney Diseases, 2017, 69, 675-683.	2.1	14
31	Two-Photon Intravital Fluorescence Lifetime Imaging of the Kidney Reveals Cell-Type Specific Metabolic Signatures. Journal of the American Society of Nephrology: JASN, 2017, 28, 2420-2430.	3.0	71
32	Intravital imaging of the kidney in a rat model of salt-sensitive hypertension. American Journal of Physiology - Renal Physiology, 2017, 313, F163-F173.	1.3	16
33	Intravital multiphoton microscopy as a tool for studying renal physiology and pathophysiology. Methods, 2017, 128, 20-32.	1.9	29
34	Mechanism of increased clearance of glycated albumin by proximal tubule cells. American Journal of Physiology - Renal Physiology, 2016, 310, F1089-F1102.	1.3	28
35	Quantifying Glomerular Filtration Rates in Acute Kidney Injury: A Requirement for Translational Success. Seminars in Nephrology, 2016, 36, 31-41.	0.6	52
36	Proximal Tubules Have the Capacity to Regulate Uptake of Albumin. Journal of the American Society of Nephrology: JASN, 2016, 27, 482-494.	3.0	67

BRUCE A MOLITORIS

#	Article	IF	CITATIONS
37	Renal effects of atorvastatin and rosuvastatin in patients with diabetes who have progressive renal disease (PLANET I): a randomised clinical trial. Lancet Diabetes and Endocrinology,the, 2015, 3, 181-190.	5.5	114
38	Shear stress is normalized in glomerular capillaries following âš nephrectomy. American Journal of Physiology - Renal Physiology, 2015, 308, F588-F593.	1.3	22
39	Renal Endothelial Injury and Microvascular Dysfunction in Acute Kidney Injury. Seminars in Nephrology, 2015, 35, 96-107.	0.6	167
40	Nephrology research—the past, present and future. Nature Reviews Nephrology, 2015, 11, 677-687.	4.1	23
41	Urinary Biomarkers. Journal of the American Society of Nephrology: JASN, 2015, 26, 1485-1488.	3.0	22
42	Effects of biomechanical forces on signaling in the cortical collecting duct (CCD). American Journal of Physiology - Renal Physiology, 2014, 307, F195-F204.	1.3	28
43	ASN Presidential Address 2013: Innovation and Individualization—The Path Forward for Nephrology. Journal of the American Society of Nephrology: JASN, 2014, 25, 893-897.	3.0	3
44	Screening for kidney disease—a lost opportunity. Nature Reviews Nephrology, 2014, 10, 6-8.	4.1	6
45	Dynamic Multiphoton Microscopy: Focusing Light on Acute Kidney Injury. Physiology, 2014, 29, 334-342.	1.6	29
46	In vivo multiphoton imaging of mitochondrial structure and function during acute kidney injury. Kidney International, 2013, 83, 72-83.	2.6	173
47	Finding the bottom and using it. Intravital, 2013, 2, e23674.	2.0	20
48	A portable fiberoptic ratiometric fluorescence analyzer provides rapid point-of-care determination of glomerular filtration rate in large animals. Kidney International, 2012, 81, 112-117.	2.6	64
49	Rapid diagnosis and quantification of acute kidney injury using fluorescent ratio-metric determination of glomerular filtration rate in the rat. American Journal of Physiology - Renal Physiology, 2010, 299, F1048-F1055.	1.3	52
50	Quantification of Renal Albumin Filtration and FcRnâ€Mediated Transcytosis via 2â€Photon Microscopy. FASEB Journal, 2010, 24, 818.2.	0.2	0
51	Techniques to study nephron function: microscopy and imaging. Pflugers Archiv European Journal of Physiology, 2009, 458, 203-209.	1.3	12
52	siRNA Targeted to p53 Attenuates Ischemic and Cisplatin-Induced Acute Kidney Injury. Journal of the American Society of Nephrology: JASN, 2009, 20, 1754-1764.	3.0	297
53	APP-112-PM āf©āffāf^èŽç§»æ¤f¢āf‡āf«ā«āšā"ā┥p53siRNAāīèŽè™šè¡€å†çŒæµå,·å®³ā,'抑å^¶āıMā,‹(ç·	会ð¾ð応	¦å⟨Ÿäſē,¹ã,įäſ
54	Technology Insight: biomarker development in acute kidney injury—what can we anticipate?. Nature Clinical Practice Nephrology, 2008, 4, 154-165.	2.0	63

BRUCE A MOLITORIS

#	Article	IF	CITATIONS
55	Contrast nephropathy: are short-term outcome measures adequate for quantification of long-term renal risk?. Nature Clinical Practice Nephrology, 2008, 4, 594-595.	2.0	11
56	Rapid determination of renal filtration function using an optical ratiometric imaging approach. American Journal of Physiology - Renal Physiology, 2007, 292, F1873-F1880.	1.3	90
57	Improving outcomes of acute kidney injury: report of an initiative. Nature Clinical Practice Nephrology, 2007, 3, 439-442.	2.0	112
58	Quantifying Dynamic Kidney Processes Utilizing Multi-Photon Microscopy. , 2007, 156, 227-235.		3
59	Renal Endothelium. , 2007, , 1271-1277.		2
60	Pharmacophotonics: Utilizing multi-photon microscopy to quantify drug delivery and intracellular trafficking in the kidney. Advanced Drug Delivery Reviews, 2006, 58, 809-823.	6.6	31
61	Intravital multiphoton microscopy of dynamic renal processes. American Journal of Physiology - Renal Physiology, 2005, 288, F1084-F1089.	1.3	155
62	Renal blood flow in sepsis: a complex issue. Critical Care, 2005, 9, 327.	2.5	19
63	Actin cytoskeleton in ischemic acute renal failure. Kidney International, 2004, 66, 871-883.	2.6	67
64	Endothelial injury and dysfunction: Role in the extension phase of acute renal failure. Kidney International, 2004, 66, 496-499.	2.6	317
65	A novel method to determine specificity and sensitivity of the TUNEL reaction in the quantitation of apoptosis. American Journal of Physiology - Cell Physiology, 2003, 284, C1309-C1318.	2.1	183
66	Endothelial injury and dysfunction in ischemic acute renal failure. Critical Care Medicine, 2002, 30, S235-S240.	0.4	110
67	Gentamicin Inhibits Renal Protein and Phospholipid Metabolism in Rats. Journal of the American Society of Nephrology: JASN, 2001, 12, 114-123.	3.0	62