
Ina T Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2132401/publications.pdf Version: 2024-02-01

- INIA	T N	I NI

#	Article	IF	CITATIONS
1	Decoupling the Effects of Interfacial Chemistry and Grain Size in Perovskite Stability. , 2021, , .		0
2	Degradation Processes in Photovoltaic Cells. , 2019, , 97-118.		4
3	Local Measurement of Janus Particle Cap Thickness. ACS Applied Materials & Interfaces, 2018, 10, 30925-30929.	8.0	18
4	Organofunctional Silane Modification of Aluminum-Doped Zinc Oxide Surfaces as a Route to Stabilization. ACS Applied Materials & amp; Interfaces, 2017, 9, 17620-17628.	8.0	12
5	Interfacial modifiers for enhanced stability and reduced degradation of Cu(In,) Tj ETQq1 1 0.784314 rgBT /Over	lock 10 Tf	50
6	A combined CFD modeling and experimental study of pyrolytic carbon deposition. Diamond and Related Materials, 2016, 70, 173-178.	3.9	7
7	Degradation of transparent conductive oxides: Interfacial engineering and mechanistic insights. Solar Energy Materials and Solar Cells, 2015, 143, 529-538.	6.2	19
8	Angle-Resolved XPS Analysis and Characterization of Monolayer and Multilayer Silane Films for DNA Coupling to Silica. Langmuir, 2013, 29, 4057-4067.	3.5	89
9	Degradation of transparent conductive oxides: mechanistic insights across configurations and exposures. , 2013, , .		4
10	Degradation of Transparent Conductive Oxides, and the Beneficial Role of Interfacial Layers. Materials Research Society Symposia Proceedings, 2013, 1537, 1.	0.1	4
11	Dislocation-limited open circuit voltage in film crystal silicon solar cells. Applied Physics Letters, 2012, 101, 123510.	3.3	6
12	High-Resolution X-ray Photoelectron Spectroscopy of Mixed Silane Monolayers for DNA Attachment. ACS Applied Materials & Interfaces, 2011, 3, 3285-3292.	8.0	25
13	High rate hot-wire chemical vapor deposition of silicon thin films using a stable TaC covered graphite filament. Thin Solid Films, 2011, 519, 4585-4588.	1.8	14
14	Hot-wire chemical vapor deposition of epitaxial film crystal silicon for photovoltaics. Thin Solid Films, 2011, 519, 4545-4550.	1.8	38
15	Material quality requirements for efficient epitaxial film silicon solar cells. Applied Physics Letters, 2010, 96, 073502.	3.3	43
16	Mechanisms controlling the phase and dislocation density in epitaxial silicon films grown from silane below 800 A°C. Applied Physics Letters, 2010, 96, .	3.3	23
17	Physics and chemistry of hot-wire chemical vapor deposition from silane: Measuring and modeling the silicon epitaxy deposition rate. Journal of Applied Physics, 2010, 107, 054906.	2.5	12
18	Controlled Nitrogen Doping and Film Colorimetrics in Porous TiO ₂ Materials Using Plasma Processing. ACS Applied Materials & Interfaces, 2010, 2, 1743-1753.	8.0	52

INA T MARTIN

#	Article	IF	CITATIONS
19	Photovoltaic-quality silicon epitaxy by hot-wire CVD at glasscompatible temperatures. , 2009, , .		0
20	Epitaxial film silicon solar cells fabricated by hot wire chemical vapor deposition below 750°C. , 2009, , .		0
21	Doping of high-quality epitaxial silicon grown by hot-wire chemical vapor deposition near 700°C. Thin Solid Films, 2009, 517, 3496-3498.	1.8	21
22	Pulsedâ€Plasmaâ€Induced Micropatterning with Alternating Hydrophilic and Hydrophobic Surface Chemistries. Plasma Processes and Polymers, 2008, 5, 129-145.	3.0	28
23	Quality and Growth Rate of Hot-wire Chemical Vapor Deposition Epitaxial Si Layers. Materials Research Society Symposia Proceedings, 2008, 1066, 1.	0.1	1
24	Plasma Modification of PDMS Microfluidic Devices for Control of Electroosmotic Flow. Plasma Processes and Polymers, 2007, 4, 414-424.	3.0	30
25	Radical-surface interactions during film deposition: A sticky situation?. Pure and Applied Chemistry, 2006, 78, 1187-1202.	1.9	28
26	Correlating ion energies and CF2 surface production during fluorocarbon plasma processing of silicon. Journal of Applied Physics, 2006, 100, 013301.	2.5	17
27	Comparison of pulsed and downstream deposition of fluorocarbon materials from C3F8 and c-C4F8 plasmas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 227-235.	2.1	53
28	lon effects on CF2 surface interactions during C3F8 and C4F8 plasma processing of Si. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 2168-2176.	2.1	40