Jie Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2132380/publications.pdf

Version: 2024-02-01

566801 433756 1,294 40 15 31 citations h-index g-index papers 41 41 41 2207 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The sodium/glucose cotransporters as potential therapeutic targets for CF lung diseases revealed by human lung organoid swelling assay. Molecular Therapy - Methods and Clinical Development, 2022, 24, 11-19.	1.8	10
2	Effects of Recloning on the Telomere Lengths of Mouse <i>Terc</i> ^{<i>+/â°'</i>} Nuclear Transfer-Derived Embryonic Stem Cells. Stem Cells and Development, 2022, 31, 720-729.	1.1	1
3	Recent Advances in Improving Gene-Editing Specificity through CRISPR–Cas9 Nuclease Engineering. Cells, 2022, 11, 2186.	1.8	25
4	Human apolipoprotein A-II reduces atherosclerosis in knock-in rabbits. Atherosclerosis, 2021, 316, 32-40.	0.4	18
5	Lipid-based vaccine nanoparticles for induction of humoral immune responses against HIV-1 and SARS-CoV-2. Journal of Controlled Release, 2021, 330, 529-539.	4.8	31
6	Effects of Survival Motor Neuron Protein on Germ Cell Development in Mouse and Human. International Journal of Molecular Sciences, 2021, 22, 661.	1.8	0
7	Genome engineering technologies in rabbits. Journal of Biomedical Research, 2021, 35, 135.	0.7	7
8	Intestinal Dysbiosis in Young Cystic Fibrosis Rabbits. Journal of Personalized Medicine, 2021, 11, 132.	1.1	6
9	Genomic insights into the host specific adaptation of the Pneumocystis genus. Communications Biology, 2021, 4, 305.	2.0	23
10	Improving the genome assembly of rabbits with long-read sequencing. Genomics, 2021, 113, 3216-3223.	1.3	7
11	Phenotypes of CF rabbits generated by CRISPR/Cas9-mediated disruption of the CFTR gene. JCI Insight, 2021, 6, .	2.3	20
12	Gene Editing in Rabbits: Unique Opportunities for Translational Biomedical Research. Frontiers in Genetics, 2021, 12, 642444.	1.1	7
13	Gene editing therapy ready for cardiovascular diseases: opportunities, challenges, and perspectives. Medical Review, 2021, 1, 6-9.	0.3	4
14	MiCas9 increases large size gene knock-in rates and reduces undesirable on-target and off-target indel edits. Nature Communications, 2020, 11 , 6082.	5.8	25
15	Immunodeficient Rabbit Models: History, Current Status and Future Perspectives. Applied Sciences (Switzerland), 2020, 10, 7369.	1.3	1
16	Myeloid CFTR lossâ€ofâ€function causes persistent neutrophilic inflammation in cystic fibrosis. Journal of Leukocyte Biology, 2020, 108, 1777-1785.	1.5	11
17	CRISPR/Cas9-Mediated TERT Disruption in Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 653.	1.8	18
18	Survival Motor Neuron Protein Participates in Mouse Germ Cell Development and Spermatogonium Maintenance. International Journal of Molecular Sciences, 2020, 21, 794.	1.8	7

#	Article	IF	CITATIONS
19	Diversity and Complexity of the Large Surface Protein Family in the Compacted Genomes of Multiple <i>Pneumocystis </i> Species. MBio, 2020, 11, .	1.8	11
20	Production of CFTR-ΔF508 Rabbits. Frontiers in Genetics, 2020, 11, 627666.	1.1	7
21	CRISPR/Cas9 Ribonucleoprotein-mediated Precise Gene Editing by Tube Electroporation. Journal of Visualized Experiments, 2019, , .	0.2	4
22	Compromised Chondrocyte Differentiation Capacity in TERC Knockout Mouse Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer. International Journal of Molecular Sciences, 2019, 20, 1236.	1.8	6
23	Efficient Gene Editing at Major CFTR Mutation Loci. Molecular Therapy - Nucleic Acids, 2019, 16, 73-81.	2.3	60
24	Generation of Rabbit Models by Gene Editing Nucleases. Methods in Molecular Biology, 2019, 1874, 327-345.	0.4	13
25	Efficient homology-directed gene editing by CRISPR/Cas9 in human stem and primary cells using tube electroporation. Scientific Reports, 2018, 8, 11649.	1.6	53
26	Bacterial and Pneumocystis Infections in the Lungs of Gene-Knockout Rabbits with Severe Combined Immunodeficiency. Frontiers in Immunology, 2018, 9, 429.	2.2	17
27	Multimodal laser-based angioscopy for structural, chemical and biological imaging of atherosclerosis. Nature Biomedical Engineering, 2017, 1, .	11.6	38
28	Genome editing in livestock: Are we ready for a revolution in animal breeding industry?. Transgenic Research, 2017, 26, 715-726.	1.3	67
29	Production of immunodeficient rabbits by multiplex embryo transfer and multiplex gene targeting. Scientific Reports, 2017, 7, 12202.	1.6	35
30	Production of Live Offspring from Vitrified-Warmed Oocytes Collected at Metaphase I Stage. PLoS ONE, 2016, 11, e0157785.	1.1	1
31	Identification and characterization of rabbit ROSA26 for gene knock-in and stable reporter gene expression. Scientific Reports, 2016, 6, 25161.	1.6	44
32	Hyperlipidemia-associated gene variations and expression patterns revealed by whole-genome and transcriptome sequencing of rabbit models. Scientific Reports, 2016, 6, 26942.	1.6	24
33	RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nature Communications, 2016, 7, 10548.	5.8	346
34	Derivation of Patient Specific Pluripotent Stem Cells Using Clinically Discarded Cumulus Cells. PLoS ONE, 2016, 11, e0165715.	1.1	2
35	Rabbit models for the study of human atherosclerosis: From pathophysiological mechanisms to translational medicine., 2015, 146, 104-119.		259
36	SMN is required for the maintenance of embryonic stem cells and neuronal differentiation in mice. Brain Structure and Function, 2015, 220, 1539-1553.	1.2	14

#	Article	IF	CITATION
37	Telomere Elongation and Naive Pluripotent Stem Cells Achieved from Telomerase Haplo-Insufficient Cells by Somatic Cell Nuclear Transfer. Cell Reports, 2014, 9, 1603-1609.	2.9	14
38	Recombinant Rabbit Leukemia Inhibitory Factor and Rabbit Embryonic Fibroblasts Support the Derivation and Maintenance of Rabbit Embryonic Stem Cells. Cellular Reprogramming, 2012, 14, 364-376.	0.5	16
39	Efficient Derivation of Embryonic Stem Cells from Nuclear Transfer and Parthenogenetic Embryos Derived from Cryopreserved Oocytes. Cellular Reprogramming, 2010, 12, 203-211.	0.5	18
40	Beneficial Effect of Young Oocytes for Rabbit Somatic Cell Nuclear Transfer. Cloning and Stem Cells, 2009, 11, 131-140.	2.6	24