Evgeny L Gurevich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2132207/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of laser shock peening without protective coating on the surface mechanical properties of NiTi alloy. Journal of Alloys and Compounds, 2022, 896, 163011.	5.5	19
2	Theoretical simulation and experimental verification of dynamic caustic manipulation using a deformable mirror for laser material processing. Optics and Laser Technology, 2022, 149, 107814.	4.6	1
3	Investigation of Laser-Induced Periodic Surface Structures Using Synthetic Optical Holography. Nanomaterials, 2022, 12, 505.	4.1	2
4	Laser metal deposition of refractory high-entropy alloys for high-throughput synthesis and structure-property characterization. International Journal of Extreme Manufacturing, 2021, 3, 015201.	12.7	27
5	The Effect of Laser Nitriding on Surface Characteristics and Wear Resistance of NiTi Alloy with Low Power Fiber Laser. Applied Sciences (Switzerland), 2021, 11, 515.	2.5	5
6	Deep Subwavelength Laser-Induced Periodic Surface Structures on Silicon as a Novel Multifunctional Biosensing Platform. ACS Applied Materials & Interfaces, 2021, 13, 54551-54560.	8.0	39
7	Optimization of processing parameters of ultrashort (100 fs–2 ps) pulsed laser shock peening of stainless steel. Journal of Laser Applications, 2021, 33, .	1.7	1
8	Uniform subwavelength high-aspect ratio nanogratings on metal-protected bulk silicon produced by laser-induced periodic surface structuring. Applied Physics Letters, 2021, 119, .	3.3	12
9	Corrosion behavior of NiTi alloy subjected to femtosecond laser shock peening without protective coating in air environment. Applied Surface Science, 2020, 501, 144338.	6.1	45
10	Femtosecond laser shock peening on the surface of NiTi shape memory alloy. Procedia CIRP, 2020, 94, 910-913.	1.9	3
11	Laser-induced surface relief nanocrowns as a manifestation of nanoscale Rayleigh-Plateau hydrodynamic instability. Applied Surface Science, 2020, 511, 145463.	6.1	15
12	Three-Step Description of Single-Pulse Formation of Laser-Induced Periodic Surface Structures on Metals. Nanomaterials, 2020, 10, 1836.	4.1	24
13	Structural colors with angle-insensitive optical properties generated by Morpho-inspired 2PP structures. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	11
14	Laser Printing of Plasmonic Nanosponges. Nanomaterials, 2020, 10, 2427.	4.1	4
15	Surface modification of NiTi alloy by ultrashort pulsed laser shock peening. Surface and Coatings Technology, 2020, 394, 125899.	4.8	31
16	Studies on ultra-short pulsed laser shock peening of stainless-steel in different confinement media. Surface and Coatings Technology, 2020, 397, 125988.	4.8	20
17	Influence of defects on structural colours generated by laser-induced ripples. Scientific Reports, 2020, 10, 53.	3.3	24
18	Silicon microprotrusions with tailored chirality enabled by direct femtosecond laser ablation. Optics Letters, 2020, 45, 3050.	3.3	12

#	Article	IF	CITATIONS
19	Two-photon polymerization with diode lasers emitting ultrashort pulses with high repetition rate. Optics Letters, 2020, 45, 4827.	3.3	6
20	Modeâ€locked diode laserâ€based twoâ€photon polymerisation. Electronics Letters, 2020, 56, 91-93.	1.0	3
21	Laser shock peening on high-strength steel. , 2020, , .		0
22	Review on experimental and theoretical investigations of the early stage, femtoseconds to microseconds processes during laser ablation in liquid-phase for the synthesis of colloidal nanoparticles. Plasma Sources Science and Technology, 2019, 28, 103001.	3.1	128
23	Femtosecond laser patterning of graphene electrodes for thin-film transistors. Applied Surface Science, 2019, 478, 299-303.	6.1	14
24	Selective Delamination upon Femtosecond Laser Ablation of Ceramic Surfaces. Physical Review Applied, 2019, 11, .	3.8	9
25	Effects of femtosecond laser shock peening in distilled water on the surface characterizations of NiTi shape memory alloy. Applied Surface Science, 2019, 471, 869-877.	6.1	33
26	Pump-probe microscopy of femtosecond laser ablation in air and liquids. Applied Surface Science, 2019, 475, 204-210.	6.1	16
27	Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends. Additive Manufacturing, 2019, 25, 252-262.	3.0	62
28	Optimization of femtosecond laser processing in liquids. Applied Surface Science, 2019, 467-468, 255-260.	6.1	28
29	Biomimetic structural coloration with tunable degree of angle-independence generated by two-photon polymerization. Optical Materials Express, 2019, 9, 2630.	3.0	20
30	Selective Delamination of Thin Films from Ceramic Surfaces upon Femtosecond Laser Ablation. , 2019, , .		0
31	Simultaneous nanopatterning and reduction of graphene oxide by femtosecond laser pulses. Applied Surface Science, 2018, 445, 197-203.	6.1	49
32	On femtosecond laser shock peening of stainless steel AISI 316. Applied Surface Science, 2018, 435, 1120-1124.	6.1	50
33	Femtosecond laser shock peening of galvanized stainless steel. Procedia CIRP, 2018, 74, 320-323.	1.9	4
34	Laser metal deposition of a refractory TiZrNbHfTa high-entropy alloy. Additive Manufacturing, 2018, 24, 386-390.	3.0	47
35	Laserâ€Textured Metal Substrates as Photoanodes for Enhanced PEC Water Splitting Reactions. Advanced Engineering Materials, 2018, 20, 1800167.	3.5	14
36	Femtosecond laser crystallization of amorphous titanium oxide thin films. Applied Physics Letters, 2018, 113, .	3.3	15

3

#	Article	IF	CITATIONS
37	Printing structural colors via direct laser writing. , 2018, , .		1
38	Wavelength dependence of picosecond laser-induced periodic surface structures on copper. Applied Surface Science, 2017, 417, 88-92.	6.1	29
39	Role of the temperature dynamics in formation of nanopatterns upon single femtosecond laser pulses on gold. Physical Review B, 2017, 95, .	3.2	36
40	Influence of solvent mixture on the ablation rate of iron using femtosecond laser pulses. , 2017, , .		0
41	Synthesis of Magnetic Nanoparticles by Ultrashort Pulsed Laser Ablation of Iron in Different Liquids. ChemPhysChem, 2017, 18, 1155-1164.	2.1	55
42	Orientation of ripples induced by ultrafast laser pulses on copper in different liquids. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	11
43	Generation of bioinspired structural colors via two-photon polymerization. Scientific Reports, 2017, 7, 17622.	3.3	48
44	Optical assembly of microsnap-fits fabricated by two-photon polymerization. Optical Engineering, 2017, 56, 1.	1.0	6
45	Graphene oxide reduction induced by femtosecond laser irradiation. , 2017, , .		1
46	Direct Metal Deposition of Refractory High Entropy Alloy MoNbTaW. Physics Procedia, 2016, 83, 624-633.	1.2	106
47	Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors. Applied Surface Science, 2016, 374, 157-164.	6.1	72
48	Investigation on femto-second laser irradiation assisted shock peening of medium carbon (0.4% C) steel. Applied Surface Science, 2016, 364, 133-140.	6.1	33
49	Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation. Applied Surface Science, 2016, 374, 56-60.	6.1	71
50	Graphene-intercalated Fe ₂ O ₃ /TiO ₂ heterojunctions for efficient photoelectrolysis of water. RSC Advances, 2015, 5, 101401-101407.	3.6	9
51	Generation of microfluidic flow using an optically assembled and magnetically driven microrotor. Journal Physics D: Applied Physics, 2014, 47, 505501.	2.8	14
52	Comparison of in Situ and ex Situ Methods for Synthesis of Two-Photon Polymerization Polymer Nanocomposites. Polymers, 2014, 6, 2037-2050.	4.5	126
53	Resolution and aspect ratio in two-photon lithography of positive photoresist. Journal of Laser Applications, 2014, 26, 022002.	1.7	3
54	Ex-situ preparation of high-conductive polymer/SWNTs nanocomposites for structure fabrication. Proceedings of SPIE, 2014, , .	0.8	0

#	Article	IF	CITATIONS
55	Laser Induced Periodic Surface Structures induced by surface plasmons coupled via roughness. Applied Surface Science, 2014, 302, 118-123.	6.1	65
56	Generation of NiTi Nanoparticles by Femtosecond Laser Ablation in Liquid. Journal of Materials Engineering and Performance, 2014, 23, 2482-2486.	2.5	12
57	Polydisperse NiTi nanoparticles investigated by X-ray standing waves and electron microscopy—A comparative study. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 98, 60-64.	2.9	6
58	On the influence of surface plasmon-polariton waves on pattern formation upon laser ablation. Applied Surface Science, 2013, 278, 52-56.	6.1	28
59	Experimental and numerical study of surface alloying by femtosecond laser radiation. Applied Surface Science, 2012, 258, 2576-2579.	6.1	5
60	Experimental estimation of the surface charge density in micro dielectric barrier discharges. Journal Physics D: Applied Physics, 2012, 45, 355205.	2.8	8
61	Development of a novel dielectric barrier microhollow cathode discharge for gaseous atomic emission spectroscopy. Journal of Analytical Atomic Spectrometry, 2012, 27, 677.	3.0	23
62	Laser scribing of ITO/ZnO thin films on flexible PET-foil for roll-to-roll production of polymer solar cells. , 2012, , .		0
63	Incubation effect and its influence on laser patterning of ITO thin film. Applied Physics A: Materials Science and Processing, 2012, 107, 333-338.	2.3	29
64	Wetting morphologies and their transitions in grooved substrates. Journal of Physics Condensed Matter, 2011, 23, 184108.	1.8	28
65	Radiofrequency driven and low cost fabricated microhollow cathode discharge for gaseous atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 2011, 26, 505-510.	3.0	19
66	Dielectric barrier discharges in analytical chemistry. Analyst, The, 2011, 136, 2427.	3.5	101
67	Analytical features of particle counting sensor based on plasmon assisted microscopy of nano objects. Sensors and Actuators B: Chemical, 2011, 160, 1210-1215.	7.8	29
68	GPGPU-basierte Echtzeitdetektion von Nanoobjekten mittels Plasmonen-unterstützter Mikroskopie. Informatik Aktuell, 2011, , 39-43.	0.6	1
69	Real-time Detection of Single Immobilized Nanoparticles by Surface Plasmon Resonance Imaging. Plasmonics, 2010, 5, 31-35.	3.4	84
70	Modification of GaAs surface by low-current Townsend discharge. Journal Physics D: Applied Physics, 2010, 43, 275302.	2.8	9
71	Signal Analysis and Classification for Surface Plasmon Assisted Microscopy of Nanoobjects. Sensors and Actuators B: Chemical, 2010, 151, 281-290.	7.8	26
72	The production of free-standing large aspect ratio metal nanofilms by femtosecond laser separation. Nanotechnology, 2009, 20, 275609.	2.6	3

#	Article	IF	CITATIONS
73	Atomistic modeling of femtosecond laser-induced melting and atomic mixing in Au film – Cu substrate system. Applied Surface Science, 2009, 255, 9605-9612.	6.1	39
74	Redistribution of deep selenium and sulfur impurities in silicon upon surface doping with phosphorus. Semiconductors, 2009, 43, 710-715.	0.5	2
75	Design and performances of a cyclonic flux cell for laser ablation. Journal of Analytical Atomic Spectrometry, 2009, 24, 328.	3.0	14
76	Femtosecond Laser-Induced Breakdown Spectroscopy: Physics, Applications, and Perspectives. Applied Spectroscopy, 2007, 61, 233A-242A.	2.2	113
77	A simple laser ICP-MS ablation cell with wash-out time less than 100 ms. Journal of Analytical Atomic Spectrometry, 2007, 22, 1043.	3.0	49
78	Dewetting of Liquid Filaments in Wedge-Shaped Grooves. Langmuir, 2007, 23, 12138-12141.	3.5	26
79	Self-sustained oscillations in a low-current discharge with a semiconductor serving as a cathode and ballast resistor: I. Experiment. Technical Physics, 2006, 51, 180-184.	0.7	13
80	Self-sustained oscillations in a low-current discharge with a semiconductor serving as a cathode and ballast resistor: II. Theory. Technical Physics, 2006, 51, 185-197.	0.7	26
81	Pattern formation in planar dc-driven semiconductor–gas discharge devices: two mechanisms. Journal Physics D: Applied Physics, 2005, 38, 468-476.	2.8	34
82	Current spots in an obstructed planar glow discharge. Journal Physics D: Applied Physics, 2005, 38, 1029-1033.	2.8	9
83	Rotating hexagonal pattern in a dielectric barrier discharge system. Physical Review E, 2004, 70, 036202.	2.1	64
84	Rotating waves in a planar dc-driven gas-discharge system with semi-insulating GaAs cathode. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 307, 299-303.	2.1	24
85	Concentric-Ring Patterns in a Dielectric Barrier Discharge System. Physical Review Letters, 2003, 91, 154501.	7.8	140