Richard A Wilhelm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2132061/publications.pdf

Version: 2024-02-01

68 papers

1,182 citations

20 h-index 32 g-index

68 all docs 68
docs citations

68 times ranked 1061 citing authors

#	Article	IF	CITATIONS
1	Surface nanostructures on Nb-doped SrTiO ₃ irradiated with swift heavy ions at grazing incidence. Nanotechnology, 2022, 33, 235303.	2.6	5
2	Low-energy electron irradiation induced synthesis of molecular nanosheets: influence of the electron beam energy. Faraday Discussions, 2021, 227, 61-79.	3.2	21
3	Nano-hillock formation on CaF2 due to individual slow Au-cluster impacts. Nanotechnology, 2021, 32, 355701.	2.6	3
4	Fluorination of graphene leads to susceptibility for nanopore formation by highly charged ion impact. Physical Review Materials, $2021,5,.$	2.4	7
5	Peeling graphite layer by layer reveals the charge exchange dynamics of ions inside a solid. Communications Physics, 2021, 4, .	5. 3	13
6	Sputter yields of rough surfaces: Importance of the mean surface inclination angle from nano- to microscopic rough regimes. Applied Surface Science, 2021, 570, 151204.	6.1	31
7	Angle-dependent charge exchange and energy loss of slow highly charged ions in freestanding graphene. Physical Review A, 2021, 104, .	2.5	5
8	Hohe Ladung trifft d $ ilde{A}^{1}\!\!/\!\!4$ nne Schicht. Vakuum in Forschung Und Praxis, 2021, 33, 30-33.	0.1	0
9	On the highly charged ion transmission spectroscopy applied to 2D materials. Journal of Physics: Conference Series, 2020, 1412, 062010.	0.4	4
10	The role of contaminations in ion beam spectroscopy with freestanding 2D materials: A study on thermal treatment. Journal of Chemical Physics, 2020, 153, 014702.	3.0	11
11	The role of contaminations on the interaction of highly charged ions with 2D materials. Journal of Physics: Conference Series, 2020, 1412, 202011.	0.4	1
12	Atomic-Scale Carving of Nanopores into a van der Waals Heterostructure with Slow Highly Charged lons. ACS Nano, 2020, 14, 10536-10543.	14.6	22
13	Electrochemical Behavior of Graphene in a Deep Eutectic Solvent. ACS Applied Materials & Samp; Interfaces, 2020, 12, 40937-40948.	8.0	29
14	Energy deposition of highly charged ions transmitted through single layer MoS2. Journal of Physics: Conference Series, 2020, 1412, 162018.	0.4	0
15	Highly charged ion impact on graphene leading to the emission of low energy electrons. Journal of Physics: Conference Series, 2020, 1412, 202012.	0.4	O
16	A high temperature dual-mode quartz crystal microbalance technique for erosion and thermal desorption spectroscopy measurements. Review of Scientific Instruments, 2020, 91, 125104.	1.3	9
17	Vanishing influence of the band gap on the charge exchange of slow highly charged ions in freestanding single-layer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2<td>l:mñ;2<td>ทl:ที่เริ่นb></td></td></mml:mn></mml:msub></mml:math>	l:mñ; 2 <td>ทl:ที่เริ่นb></td>	ทl:ที่เริ่นb>
18	Sputtering of nanostructured tungsten and comparison to modelling with TRI3DYN. Journal of Nuclear Materials, 2020, 532, 152019.	2.7	23

#	Article	IF	Citations
19	Charge-Exchange-Driven Low-Energy Electron Splash Induced by Heavy Ion Impact on Condensed Matter. Journal of Physical Chemistry Letters, 2019, 10, 4805-4811.	4.6	17
20	Unraveling energy loss processes of low energy heavy ions in 2D materials. Communications Physics, 2019, 2, .	5.3	28
21	Roadmap on photonic, electronic and atomic collision physics: III. Heavy particles: with zero to relativistic speeds. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 171003.	1.5	22
22	Creation of surface nanostructures in lanthanum fluoride single crystals by irradiation with slow highly charged ions. Nuclear Instruments & Methods in Physics Research B, 2019, 460, 137-140.	1.4	5
23	Perforating Freestanding Molybdenum Disulfide Monolayers with Highly Charged Ions. Journal of Physical Chemistry Letters, 2019, 10, 904-910.	4.6	42
24	The role of radiative de-excitation in the neutralization process of highly charged ions interacting with a single layer of graphene. Nuclear Instruments & Methods in Physics Research B, 2018, 422, 63-67.	1.4	4
25	Neutralization Dynamics of Slow Highly Charged Ions in 2D Materials. Applied Sciences (Switzerland), 2018, 8, 1050.	2.5	8
26	A versatile ion beam spectrometer for studies of ion interaction with 2D materials. Review of Scientific Instruments, 2018, 89, 085101.	1.3	14
27	Swift heavy ion track formation in SrTiO ₃ and TiO ₂ under random, channeling and near-channeling conditions. Journal Physics D: Applied Physics, 2017, 50, 205302.	2.8	24
28	Charge equilibration times for slow highly charged ions in single layer graphene. Journal of Physics: Conference Series, 2017, 875, 112001.	0.4	0
29	Interatomic Coulombic Decay: The Mechanism for Rapid Deexcitation of Hollow Atoms. Physical Review Letters, 2017, 119, 103401.	7.8	69
30	Ultrafast electronic response of graphene to a strong and localized electric field. Nature Communications, 2016, 7, 13948.	12.8	125
31	A setup for transmission measurements of low energy multiply charged ions through free-standing few atomic layer films. Nuclear Instruments & Methods in Physics Research B, 2016, 382, 119-122.	1.4	1
32	Tuning the Fabrication of Nanostructures by Low-Energy Highly Charged Ions. Physical Review Letters, 2016, 117, 126101.	7.8	29
33	Slow highly charged ion induced nanopit formation on the KCl(001) surface. Europhysics Letters, 2016, 115, 43001.	2.0	10
34	Charge-state-dependent energy loss of slow ions. I. Experimental results on the transmission of highly charged ions. Physical Review A, 2016, 93, .	2.5	20
35	Charge-state-dependent energy loss of slow ions. II. Statistical atom model. Physical Review A, 2016, 93,	2.5	16
36	Modifications of gallium phosphide single crystals using slow highly charged ions and swift heavy ions. Nuclear Instruments & Methods in Physics Research B, 2016, 382, 86-90.	1.4	3

#	Article	IF	CITATIONS
37	Polarity dependence of Mn incorporation in (Ga,Mn)N superlattices. Journal of Crystal Growth, 2016, 437, 49-52.	1.5	1
38	Erbium-ion implantation into various crystallographic cuts of Al2O3. Nuclear Instruments & Methods in Physics Research B, 2015, 365, 89-93.	1.4	3
39	Interaction of multiply charged ions with single layer graphene Part I: charge exchange and energy loss. Journal of Physics: Conference Series, 2015, 635, 032002.	0.4	0
40	Interaction of highly charged ions with carbon nano membranes. Journal of Physics: Conference Series, 2015, 635, 012027.	0.4	1
41	Threshold and Efficiency for Perforation of 1nm Thick Carbon Nano-membranes with Slow Highly Charged Ions. Journal of Physics: Conference Series, 2015, 635, 032011.	0.4	O
42	Ion implantation of the <scp>4H SiC</scp> epitaxial layers and substrates with 2 <scp>MeV Se⁺</scp> and 1 <scp>MeV Al⁺</scp> ions. X-Ray Spectrometry, 2015, 44, 371-37	78 ^{1.4}	2
43	Threshold and efficiency for perforation of $1\mathrm{nm}$ thick carbon nanomembranes with slow highly charged ions. 2D Materials, 2015, 2, 035009.	4.4	21
44	Tuning the antiferromagnetic to ferromagnetic phase transition in FeRh thin films by means of low-energy/low fluence ion irradiation. Nuclear Instruments & Methods in Physics Research B, 2015, 358, 251-254.	1.4	20
45	Depth-Resolved Structural and Compositional Characterization of Ion-Implanted Polystyrene that Enables Direct Covalent Immobilization of Biomolecules. Journal of Physical Chemistry C, 2015, 119, 16793-16803.	3.1	21
46	Highly charged ion induced nanostructures at surfaces by strong electronic excitations. Progress in Surface Science, 2015, 90, 377-395.	8.3	31
47	Response of GaN to energetic ion irradiation: conditions for ion track formation. Journal Physics D: Applied Physics, 2015, 48, 325304.	2.8	40
48	Ferromagnetic and paramagnetic magnetization of implanted GaN:Ho,Tb,Sm,Tm films. Journal of Applied Physics, 2015, 117, .	2.5	5
49	Nano-structuring of CaF2 surfaces by slow highly charged ions: simulation and experiment. Journal of Physics: Conference Series, 2014, 488, 132015.	0.4	1
50	The structural changes and optical properties of LiNbO3 after Er implantation using high ion fluencies. Nuclear Instruments & Methods in Physics Research B, 2014, 332, 74-79.	1.4	7
51	Charge Exchange and Energy Loss of Slow Highly Charged Ions in 1Ânm Thick Carbon Nanomembranes. Physical Review Letters, 2014, 112, 153201.	7.8	62
52	Surface modifications of BaF2 and CaF2 single crystals by slow highly charged ions. Applied Surface Science, 2014, 310, 169-173.	6.1	11
53	A study of the structural and magnetic properties of ZnO implanted by Gd ions. Nuclear Instruments & Methods in Physics Research B, 2014, 332, 80-84.	1.4	9
54	A comparison of the structural changes and optical properties of LiNbO3, Al2O3 and ZnO after Er+ ion implantation. Nuclear Instruments & Methods in Physics Research B, 2014, 331, 182-186.	1.4	12

#	Article	IF	CITATIONS
55	Nanostructuring CaF2 surfaces with slow highly charged ions. Journal of Physics: Conference Series, 2014, 488, 012002.	0.4	3
56	Fabrication of nanopores in $1\hat{a}\in\%$ nm thick carbon nanomembranes with slow highly charged ions. Applied Physics Letters, 2013, 102, .	3.3	49
57	Surface nanostructuring of LiNbO3 by high-density electronic excitations. Nuclear Instruments & Methods in Physics Research B, 2013, 315, 265-268.	1.4	14
58	Creation of surface nanostructures in Al2O3 by slow highly charged ions. Nuclear Instruments & Methods in Physics Research B, 2013, 317, 170-173.	1.4	9
59	A study of the structural properties of GaN implanted by various rare-earth ions. Nuclear Instruments & Methods in Physics Research B, 2013, 307, 446-451.	1.4	17
60	Novel aspects on the irradiation of HOPG surfaces with slow highly charged ions. Nuclear Instruments & Methods in Physics Research B, 2013, 315, 252-256.	1.4	14
61	Effect of chemical etching on poly(methyl methacrylate) irradiated with slow highly charged ions. Physica Scripta, 2013, T156, 014065.	2.5	O
62	Pit formation on poly(methyl methacrylate) due to ablation induced by individual slow highly charged ion impact. Europhysics Letters, 2012, 97, 13001.	2.0	26
63	Surface Modification on KBr(001) with Slow Highly Charged Ions in High Fluence and High Potential Energy Regime. Journal of Physics: Conference Series, 2012, 388, 132030.	0.4	O
64	Phase Diagram for Nanostructuring <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CaF</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> Surfaces by Slow Highly Charged Ions. Physical Review Letters, 2012, 109, 117602.	; 7. 8	42
65	Surface nanostructuring of SrTiO3 single crystals by slow highly charged ions and swift heavy ions. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 1234-1237.	1.4	27
66	Nanostructures induced by highly charged ions on CaF ₂ and KBr. Journal of Physics: Conference Series, 2009, 194, 012060.	0.4	6
67	Nanostructures formed on KBr surfaces by the impact of highly charged ions. Journal of Physics: Conference Series, 2009, 194, 132022.	0.4	1
68	Defect Mediated Desorption of the KBr(001) Surface Induced by Single Highly Charged Ion Impact. Physical Review Letters, 2008, 101, 096102.	7.8	91