
Guoqing Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2132055/publications.pdf Version: 2024-02-01

Споотис Ни

#	Article	IF	CITATIONS
1	Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows. ACS Nano, 2017, 11, 6968-6976.	14.6	369
2	Double spiral microchannel for label-free tumor cell separation and enrichment. Lab on A Chip, 2012, 12, 3952.	6.0	242
3	Particle manipulations in non-Newtonian microfluidics: A review. Journal of Colloid and Interface Science, 2017, 500, 182-201.	9.4	214
4	Physicochemical Properties of Nanoparticles Regulate Translocation across Pulmonary Surfactant Monolayer and Formation of Lipoprotein Corona. ACS Nano, 2013, 7, 10525-10533.	14.6	181
5	Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers. Lab on A Chip, 2015, 15, 1168-1177.	6.0	150
6	Size-Based Separation of Particles and Cells Utilizing Viscoelastic Effects in Straight Microchannels. Analytical Chemistry, 2015, 87, 6041-6048.	6.5	141
7	Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels. Biomicrofluidics, 2013, 7, 011802.	2.4	129
8	Cell membrane coating integrity affects the internalization mechanism of biomimetic nanoparticles. Nature Communications, 2021, 12, 5726.	12.8	126
9	Unveiling the Molecular Structure of Pulmonary Surfactant Corona on Nanoparticles. ACS Nano, 2017, 11, 6832-6842.	14.6	103
10	DC dielectrophoretic focusing of particles in a serpentine microchannel. Microfluidics and Nanofluidics, 2009, 7, 751-756.	2.2	94
11	Joule heating effects on electroosmotic flow in insulatorâ€based dielectrophoresis. Electrophoresis, 2011, 32, 2274-2281.	2.4	86
12	Microfluidic based high throughput synthesis of lipid-polymer hybrid nanoparticles with tunable diameters. Biomicrofluidics, 2015, 9, 052604.	2.4	84
13	Probing Non-Gaussianity in Confined Diffusion of Nanoparticles. Journal of Physical Chemistry Letters, 2016, 7, 514-519.	4.6	84
14	Nanoparticle Ligand Exchange and Its Effects at the Nanoparticle–Cell Membrane Interface. Nano Letters, 2019, 19, 8-18.	9.1	84
15	A generalized formula for inertial lift on a sphere in microchannels. Lab on A Chip, 2016, 16, 884-892.	6.0	83
16	Microfluidic co-flow of Newtonian and viscoelastic fluids for high-resolution separation of microparticles. Lab on A Chip, 2017, 17, 3078-3085.	6.0	77
17	A microfluidic tubing method and its application for controlled synthesis of polymeric nanoparticles. Lab on A Chip, 2014, 14, 1673-1677.	6.0	75
18	Sheathless Focusing and Separation of Diverse Nanoparticles in Viscoelastic Solutions with Minimized Shear Thinning. Analytical Chemistry, 2016, 88, 12547-12553.	6.5	74

Сиодінс Ни

#	Article	IF	CITATIONS
19	Inertial migration of deformable droplets in a microchannel. Physics of Fluids, 2014, 26, .	4.0	55
20	Effects of graphene oxide nanosheets on the ultrastructure and biophysical properties of the pulmonary surfactant film. Nanoscale, 2015, 7, 18025-18029.	5.6	54
21	High-Throughput Particle Manipulation Based on Hydrodynamic Effects in Microchannels. Micromachines, 2017, 8, 73.	2.9	54
22	Deformable Metal–Organic Framework Nanosheets for Heterogeneous Catalytic Reactions. Journal of the American Chemical Society, 2020, 142, 9408-9414.	13.7	50
23	Numerical modeling of <scp>J</scp> oule heating effects in insulatorâ€based dielectrophoresis microdevices. Electrophoresis, 2013, 34, 674-683.	2.4	45
24	Joule heating effects on electroosmotic entry flow. Electrophoresis, 2017, 38, 572-579.	2.4	41
25	Computational Investigations of the Interaction between the Cell Membrane and Nanoparticles Coated with a Pulmonary Surfactant. ACS Applied Materials & Interfaces, 2018, 10, 20368-20376.	8.0	40
26	Diffusion of rod-like nanoparticles in non-adhesive and adhesive porous polymeric gels. Journal of the Mechanics and Physics of Solids, 2018, 112, 431-457.	4.8	39
27	Joule heating effects on reservoirâ€based dielectrophoresis. Electrophoresis, 2014, 35, 721-727.	2.4	36
28	Induced charge effects on electrokinetic entry flow. Physics of Fluids, 2017, 29, .	4.0	35
29	Diffusion of Nanoparticles with Activated Hopping in Crowded Polymer Solutions. Nano Letters, 2020, 20, 3895-3904.	9.1	34
30	Electrothermal enrichment of submicron particles in an insulatorâ€based dielectrophoretic microdevice. Electrophoresis, 2018, 39, 887-896.	2.4	31
31	Inertial migrations of cylindrical particles in rectangular microchannels: Variations of equilibrium positions and equivalent diameters. Physics of Fluids, 2018, 30, .	4.0	28
32	Joule heating effects on electrokinetic focusing and trapping of particles in constriction microchannels. Journal of Micromechanics and Microengineering, 2012, 22, 075011.	2.6	22
33	Machine learning assisted fast prediction of inertial lift in microchannels. Lab on A Chip, 2021, 21, 2544-2556.	6.0	21
34	Electrokinetic particle entry into microchannels. Electrophoresis, 2012, 33, 916-922.	2.4	20
35	Deformation and Interaction of Droplet Pairs in a Microchannel Under ac Electric Fields. Physical Review Applied, 2015, 4, .	3.8	19
36	Extracting pulmonary surfactants to form inverse micelles on suspended graphene nanosheets. Environmental Science: Nano, 2018, 5, 130-140.	4.3	19

Guoqing Hu

#	Article	IF	CITATIONS
37	Adsorption of Phospholipids at the Air-Water Surface. Biophysical Journal, 2019, 117, 1224-1233.	0.5	19
38	Nanoparticle translocation across the lung surfactant film regulated by grafting polymers. Nanoscale, 2020, 12, 3931-3940.	5.6	18
39	Amphiphilic silver nanoclusters show active nano–bio interaction with compelling antibacterial activity against multidrug-resistant bacteria. NPG Asia Materials, 2020, 12, .	7.9	15
40	Experimental characterization of electrical current leakage in poly(dimethylsiloxane) microfluidic devices. Microfluidics and Nanofluidics, 2009, 6, 589-598.	2.2	14
41	Confinements regulate capillary instabilities of fluid threads. Journal of Fluid Mechanics, 2019, 873, 816-834.	3.4	14
42	Directional transport of centimeter-scale object on anisotropic microcilia surface under water. Science China Materials, 2019, 62, 236-244.	6.3	13
43	Deep learning-based reconstruction of the structure of heterogeneous composites from their temperature fields. AIP Advances, 2020, 10, .	1.3	12
44	Tunable structures of compound droplets formed by collision of immiscible microdroplets. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	11
45	Multiscale computational framework for predicting viscoelasticity of red blood cells in aging and mechanical fatigue. Computer Methods in Applied Mechanics and Engineering, 2022, 391, 114535.	6.6	11
46	Directional and Rotational Motions of Nanoparticles on Plasma Membranes as Local Probes of Surface Tension Propagation. Langmuir, 2019, 35, 5333-5341.	3.5	10
47	Modeling of droplet traffic in interconnected microfluidic ladder devices. Electrophoresis, 2012, 33, 411-418.	2.4	9
48	Sheathless Separation of Particles and Cells by Viscoelastic Effects in Straight Rectangular Microchannels. Procedia Engineering, 2015, 126, 721-724.	1.2	8
49	Distinct dynamics of self-propelled bowl-shaped micromotors caused by shape effect: Concave vs convex. Physics of Fluids, 2021, 33, .	4.0	6
50	Lateral migration of dual droplet trains in a double spiral microchannel. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	5.1	5
51	Encoding and controlling of two droplet trains in a microfluidic network with the loop-like structure. Microfluidics and Nanofluidics, 2015, 19, 1363-1375.	2.2	4
52	Flow-pattern-altered syntheses of core–shell and hole–shell microparticles in an axisymmetric microfluidic device. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 1378-1386.	3.4	4
53	Interfacial behavior of phospholipid monolayers revealed by mesoscopic simulation. Biophysical Journal, 2021, 120, 4751-4762.	0.5	4
54	The aggregation of carbon nanotubes deteriorates their adverse effects on pulmonary surfactant monolayer. Nano Today, 2022, 45, 101525.	11.9	4

#	Article	IF	CITATIONS
55	Fluid Property Effects on the Splashing in Teapot Effect. Journal of Physical Chemistry C, 2018, 122, 21411-21417.	3.1	3
56	On the Successful Encapsulation of Water Droplets into Oil Droplets. Procedia Engineering, 2015, 126, 725-729.	1.2	1
57	Extracorporeal Shock Wave Therapy: Quantitative Assessments of Mechanical Responses upon Radial Extracorporeal Shock Wave Therapy (Adv. Sci. 3/2018). Advanced Science, 2018, 5, 1870015.	11.2	0