
Andrew M Coney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2132030/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Are Multiple Mitochondrial Related Signalling Pathways Involved in Carotid Body Oxygen Sensing?. Frontiers in Physiology, 2022, 13, .	1.3	5
2	β-Adrenoceptor blockade prevents carotid body hyperactivity and elevated vascular sympathetic nerve density induced by chronic intermittent hypoxia. Pflugers Archiv European Journal of Physiology, 2021, 473, 37-51.	1.3	7
3	Mitochondrial Succinate Metabolism and Reactive Oxygen Species Are Important but Not Essential for Eliciting Carotid Body and Ventilatory Responses to Hypoxia in the Rat. Antioxidants, 2021, 10, 840.	2.2	13
4	Lung function and breathing patterns in hospitalised COVID-19 survivors: a review of post-COVID-19 Clinics. Respiratory Research, 2021, 22, 255.	1.4	16
5	Measurement of breathing in patients with post-COVID-19 using structured light plethysmography (SLP). BMJ Open Respiratory Research, 2021, 8, e001070.	1.2	2
6	A student practical to conceptualize the importance of Poiseuille's law and flow control in the cardiovascular system. American Journal of Physiology - Advances in Physiology Education, 2020, 44, 436-443.	0.8	9
7	G-Protein-Coupled Receptor (GPCR) Signaling in the Carotid Body: Roles in Hypoxia and Cardiovascular and Respiratory Disease. International Journal of Molecular Sciences, 2020, 21, 6012.	1.8	12
8	Adrenaline activation of the carotid body: Key to CO2 and pH homeostasis in hypoglycaemia and potential pathological implications in cardiovascular disease. Respiratory Physiology and Neurobiology, 2019, 265, 92-99.	0.7	10
9	Ectoâ€5′â€nucleotidase (CD73) regulates peripheral chemoreceptor activity and cardiorespiratory responses to hypoxia. Journal of Physiology, 2018, 596, 3137-3148.	1.3	15
10	Is Carotid Body Physiological O2 Sensitivity Determined by a Unique Mitochondrial Phenotype?. Frontiers in Physiology, 2018, 9, 562.	1.3	15
11	Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development. Scientific Reports, 2017, 7, 9079.	1.6	76
12	Adrenaline release evokes hyperpnoea and an increase in ventilatory CO ₂ sensitivity during hypoglycaemia: a role for the carotid body. Journal of Physiology, 2016, 594, 4439-4452.	1.3	31
13	Mild Chronic Intermittent Hypoxia in Wistar Rats Evokes Significant Cardiovascular Pathophysiology but No Overt Changes in Carotid Body-Mediated Respiratory Responses. Advances in Experimental Medicine and Biology, 2015, 860, 245-254.	0.8	7
14	Prenatal Hypoxia Leads to Increased Muscle Sympathetic Nerve Activity, Sympathetic Hyperinnervation, Premature Blunting of Neuropeptide Y Signaling, and Hypertension in Adult Life. Hypertension, 2014, 64, 1321-1327.	1.3	40
15	Hypoxic fetal programming of the sympathetic nervous system. FASEB Journal, 2011, 25, 1029.1.	0.2	Ο
16	Effects of maternal hypoxia on muscle vasodilatation evoked by acute systemic hypoxia in adult rat offspring: changed roles of adenosine and A ₁ receptors. Journal of Physiology, 2010, 588, 5115-5125.	1.3	11
17	Both substrate availability and utilisation contribute to the defence of core temperature in response to acute cold. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 154, 514-522.	0.8	8
18	Contribution of α2-adrenoceptors and Y1neuropeptide Y receptors to the blunting of sympathetic vasoconstriction induced by systemic hypoxia in the rat. Journal of Physiology, 2007, 582, 1349-1359.	1.3	23

ANDREW M CONEY

#	Article	IF	CITATIONS
19	The role of platelet activating factor in a neonatal piglet model of necrotising enterocolitis. Gut, 2004, 53, 207-213.	6.1	59
20	Influence of endogenous nitric oxide on sympathetic vasoconstriction in normoxia, acute and chronic systemic hypoxia in the rat. Journal of Physiology, 2004, 555, 793-804.	1.3	16
21	The Role of Free Radicals in the Muscle Vasodilatation of Systemic Hypoxia in the Rat. Experimental Physiology, 2003, 88, 733-740.	0.9	9
22	Contribution of Adenosine to the Depression of Sympathetically Evoked Vasoconstriction induced by Systemic Hypoxia in the Rat. Journal of Physiology, 2003, 549, 613-623.	1.3	17
23	Interactions of adenosine, prostaglandins and nitric oxide in hypoxiaâ€induced vasodilatation: in vivo and in vitro studies. Journal of Physiology, 2002, 544, 195-209.	1.3	128
24	Roles of norepinephrine and ATP in sympathetically evoked vasoconstriction in rat tail and hindlimb in vivo. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H2432-H2440.	1.5	39
25	Role of adenosine and its receptors in the vasodilatation induced in the cerebral cortex of the rat by systemic hypoxia. Journal of Physiology, 1998, 509, 507-518.	1.3	84