
Yuxiao Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2131533/publications.pdf Version: 2024-02-01

Υπλινο Γιπ

#	Article	IF	CITATIONS
1	Nanomotorâ€Derived Porous Biomedical Particles from Droplet Microfluidics. Advanced Science, 2022, 9, e2104272.	5.6	31
2	Biomass Microcapsules with Stem Cell Encapsulation for Bone Repair. Nano-Micro Letters, 2022, 14, 4.	14.4	56
3	Polydopamine Decorated Microneedles with Feâ€MSCâ€Derived Nanovesicles Encapsulation for Wound Healing. Advanced Science, 2022, 9, e2103317.	5.6	110
4	Black phosphorus quantum dots doped multifunctional hydrogel particles for cancer immunotherapy. Chemical Engineering Journal, 2021, 408, 127349.	6.6	35
5	Microfluidics for Drug Development: From Synthesis to Evaluation. Chemical Reviews, 2021, 121, 7468-7529.	23.0	95
6	NIR-responsive structural color hydrogel microchannel for self-regulating microfluidic system. Applied Materials Today, 2021, 24, 101115.	2.3	5
7	Metformin loaded porous particles with bio-microenvironment responsiveness for promoting tumor immunotherapy. Biomaterials Science, 2021, 9, 2082-2089.	2.6	11
8	Bioinspired Artificial Liver System with hiPSCâ€Derived Hepatocytes for Acute Liver Failure Treatment. Advanced Healthcare Materials, 2021, 10, e2101580.	3.9	20
9	Hierarchically Inverse Opal Porous Scaffolds from Droplet Microfluidics for Biomimetic 3D Cell Co-Culture. Engineering, 2021, 7, 1778-1785.	3.2	15
10	Orally administrated nucleotide-delivery particles from microfluidics for inflammatory bowel disease treatment. Applied Materials Today, 2021, 25, 101231.	2.3	9
11	Immunotherapeutic silk inverse opal particles for post-surgical tumor treatment. Science Bulletin, 2020, 65, 380-388.	4.3	73
12	Anisotropic structural color particles from colloidal phase separation. Science Advances, 2020, 6, eaay1438.	4.7	133
13	Responsive drug-delivery microcarriers based on the silk fibroin inverse opal scaffolds for controllable drug release. Applied Materials Today, 2020, 19, 100540.	2.3	34
14	Bio-inspired lubricant drug delivery particles for the treatment of osteoarthritis. Nanoscale, 2020, 12, 17093-17102.	2.8	53
15	Bioinspired structural color particles with multi-layer graphene oxide encapsulated nanoparticle components. Bioactive Materials, 2020, 5, 917-923.	8.6	16
16	Black Phosphorus-Loaded Separable Microneedles as Responsive Oxygen Delivery Carriers for Wound Healing. ACS Nano, 2020, 14, 5901-5908.	7.3	215
17	Photoresponsive Delivery Microcarriers for Tissue Defects Repair. Advanced Science, 2019, 6, 1901280.	5.6	50
18	Bio-Inspired Self-Adhesive Bright Non-iridescent Graphene Pigments. Matter, 2019, 1, 1581-1591.	5.0	50

Υυχιλο Για

#	Article	IF	CITATIONS
19	A responsive porous hydrogel particle-based delivery system for oncotherapy. Nanoscale, 2019, 11, 2687-2693.	2.8	30
20	Graphene hybrid colloidal crystal arrays with photo-controllable structural colors. Nanoscale, 2019, 11, 10846-10851.	2.8	35
21	Responsive Porous Microcarriers With Controllable Oxygen Delivery for Wound Healing. Small, 2019, 15, e1901254.	5.2	65
22	Pâ€Glycoprotein Antibody Decorated Porous Hydrogel Particles for Capture and Release of Drugâ€Resistant Tumor Cells. Advanced Healthcare Materials, 2019, 8, e1900136.	3.9	22
23	Antibacterial Porous Microcarriers with a Pathological State Responsive Switch for Wound Healing. ACS Applied Bio Materials, 2019, 2, 2155-2161.	2.3	14
24	Droplet Microarray on Patterned Butterfly Wing Surfaces for Cell Spheroid Culture. Langmuir, 2019, 35, 3832-3839.	1.6	36
25	Spinning and Applications of Bioinspired Fiber Systems. ACS Nano, 2019, 13, 2749-2772.	7.3	151
26	Tofu-inspired microcarriers from droplet microfluidics for drug delivery. Science China Chemistry, 2019, 62, 87-94.	4.2	42
27	Porous scaffolds from droplet microfluidics for prevention of intrauterine adhesion. Acta Biomaterialia, 2019, 84, 222-230.	4.1	60
28	Responsive Inverse Opal Scaffolds with Biomimetic Enrichment Capability for Cell Culture. Research, 2019, 2019, 9783793.	2.8	124
29	Egg Component-Composited Inverse Opal Particles for Synergistic Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 17058-17064.	4.0	22
30	Aptamer-based hydrogel barcodes for the capture and detection of multiple types of pathogenic bacteria. Biosensors and Bioelectronics, 2018, 100, 404-410.	5.3	86
31	Silk Fibroin Microparticles with Hollow Mesoporous Silica Nanocarriers Encapsulation for Abdominal Wall Repair. Advanced Healthcare Materials, 2018, 7, e1801005.	3.9	31
32	Peanut-inspired anisotropic microparticles from microfluidics. Composites Communications, 2018, 10, 129-135.	3.3	9
33	Multifunctional Chitosan Inverse Opal Particles for Wound Healing. ACS Nano, 2018, 12, 10493-10500.	7.3	141
34	Pollen-inspired microparticles with strong adhesion for drug delivery. Applied Materials Today, 2018, 13, 303-309.	2.3	46
35	Vitamin metal–organic framework-laden microfibers from microfluidics for wound healing. Materials Horizons, 2018, 5, 1137-1142.	6.4	105
36	Mesoporous Colloidal Photonic Crystal Particles for Intelligent Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 33936-33944.	4.0	38

Υυχιλό Για

#	Article	IF	CITATIONS
37	Multicolored photonic barcodes from dynamic micromolding. Materials Horizons, 2018, 5, 979-983.	6.4	40
38	Quantum-dot-encapsulated core–shell barcode particles from droplet microfluidics. Journal of Materials Chemistry B, 2018, 6, 7257-7262.	2.9	28
39	Biomimetic enzyme cascade reaction system in microfluidic electrospray microcapsules. Science Advances, 2018, 4, eaat2816.	4.7	277
40	Hierarchically porous composite microparticles from microfluidics for controllable drug delivery. Nanoscale, 2018, 10, 12595-12604.	2.8	41
41	Composite core-shell microparticles from microfluidics for synergistic drug delivery. Science China Materials, 2017, 60, 543-553.	3.5	74
42	Microfluidic generation of egg-derived protein microcarriers for 3D cell culture and drug delivery. Science Bulletin, 2017, 62, 1283-1290.	4.3	81
43	Tubular inverse opal scaffolds for biomimetic vessels. Nanoscale, 2016, 8, 13574-13580.	2.8	28
44	Photonic Crystal Microbubbles as Suspension Barcodes. Journal of the American Chemical Society, 2015, 137, 15533-15539.	6.6	117