Seungdo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2131365/publications.pdf Version: 2024-02-01

SELINCDO KIM

#	Article	IF	CITATIONS
1	Carbon-Negative Biofuel Production. Environmental Science & amp; Technology, 2020, 54, 10797-10807.	4.6	26
2	Sustainable feedstock for bioethanol production: Impact of spatial resolution on the design of a sustainable biomass supply-chain. Bioresource Technology, 2020, 302, 122896.	4.8	14
3	Integration in a depotâ€based decentralized biorefinery system: Corn stoverâ€based cellulosic biofuel. GCB Bioenergy, 2019, 11, 871-882.	2.5	22
4	The Renewable Fuel Standard May Limit Overall Greenhouse Gas Savings by Corn Stover-Based Cellulosic Biofuels in the U.S. Midwest: Effects of the Regulatory Approach on Projected Emissions. Environmental Science & Technology, 2019, 53, 2288-2294.	4.6	6
5	Corn stover cannot simultaneously meet both the volume and GHG reduction requirements of the renewable fuel standard. Biofuels, Bioproducts and Biorefining, 2018, 12, 203-212.	1.9	11
6	EISA (Energy Independence and Security Act) compliant ethanol fuel from corn stover in a depotâ€based decentralized system. Biofuels, Bioproducts and Biorefining, 2018, 12, 873-881.	1.9	6
7	Greenhouse gas emissions of electricity and biomethane produced using the Biogasdonerightâ,,¢ system: four case studies from Italy. Biofuels, Bioproducts and Biorefining, 2017, 11, 847-860.	1.9	52
8	A distributed cellulosic biorefinery system in the US Midwest based on corn stover. Biofuels, Bioproducts and Biorefining, 2016, 10, 819-832.	1.9	24
9	All biomass is local: The cost, volume produced, and global warming impact of cellulosic biofuels depend strongly on logistics and local conditions. Biofuels, Bioproducts and Biorefining, 2015, 9, 422-434.	1.9	49
10	Comparing alternative cellulosic biomass biorefining systems: Centralized versus distributed processing systems. Biomass and Bioenergy, 2015, 74, 135-147.	2.9	89
11	Indirect land use change and biofuels: Mathematical analysis reveals a fundamental flaw in the regulatory approach. Biomass and Bioenergy, 2014, 71, 408-412.	2.9	9
12	An alternative approach to indirect land use change: Allocating greenhouse gas effects among different uses ofAland. Biomass and Bioenergy, 2012, 46, 447-452.	2.9	13
13	Biofuels Done Right: Land Efficient Animal Feeds Enable Large Environmental and Energy Benefits. Environmental Science & Technology, 2010, 44, 8385-8389.	4.6	93
14	Life cycle assessment of corn grain and corn stover in the United States. International Journal of Life Cycle Assessment, 2009, 14, 160-174.	2.2	179
15	Enzymes for pharmaceutical applications—a cradle-to-gate life cycle assessment. International Journal of Life Cycle Assessment, 2009, 14, 392-400.	2.2	72
16	Biofuels, Land Use Change, and Greenhouse Gas Emissions: Some Unexplored Variables. Environmental Science & Technology, 2009, 43, 961-967.	4.6	235
17	Life cycle assessment of fuel ethanol derived from corn grain via dry milling. Bioresource Technology, 2008, 99, 5250-5260.	4.8	93
18	Effects of Nitrogen Fertilizer Application on Greenhouse Gas Emissions and Economics of Corn Production. Environmental Science & Technology, 2008, 42, 6028-6033.	4.6	84

#	Article	IF	CITATIONS
19	Energy and Greenhouse Gas Profiles of Polyhydroxybutyrates Derived from Corn Grain: A Life Cycle Perspective. Environmental Science & Technology, 2008, 42, 7690-7695.	4.6	84
20	Allocation procedure in ethanol production system from corn grain i. system expansion. International Journal of Life Cycle Assessment, 2002, 7, 237.	2.2	151