
## Rahul Satija

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2130826/publications.pdf Version: 2024-02-01



ΡΛΗΠΙ ΚΛΤΠΛ

| #  | Article                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Comprehensive Integration of Single-Cell Data. Cell, 2019, 177, 1888-1902.e21.                                                                      | 28.9 | 9,755     |
| 2  | Integrating single-cell transcriptomic data across different conditions, technologies, and species.<br>Nature Biotechnology, 2018, 36, 411-420.     | 17.5 | 8,878     |
| 3  | Integrated analysis of multimodal single-cell data. Cell, 2021, 184, 3573-3587.e29.                                                                 | 28.9 | 5,912     |
| 4  | Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell, 2015, 161, 1202-1214.                          | 28.9 | 5,908     |
| 5  | Spatial reconstruction of single-cell gene expression data. Nature Biotechnology, 2015, 33, 495-502.                                                | 17.5 | 4,254     |
| 6  | Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biology, 2019, 20, 296. | 8.8  | 2,460     |
| 7  | Simultaneous epitope and transcriptome measurement in single cells. Nature Methods, 2017, 14, 865-868.                                              | 19.0 | 2,124     |
| 8  | Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors.<br>Science, 2017, 356, .                          | 12.6 | 1,846     |
| 9  | The Human Cell Atlas. ELife, 2017, 6, .                                                                                                             | 6.0  | 1,547     |
| 10 | Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature, 2013, 498, 236-240.                              | 27.8 | 1,103     |
| 11 | Single-cell RNA sequencing to explore immune cell heterogeneity. Nature Reviews Immunology, 2018, 18, 35-45.                                        | 22.7 | 1,085     |
| 12 | The Genome of the Sea Urchin <i>Strongylocentrotus purpuratus</i> . Science, 2006, 314, 941-952.                                                    | 12.6 | 1,018     |
| 13 | Integrative single-cell analysis. Nature Reviews Genetics, 2019, 20, 257-272.                                                                       | 16.3 | 932       |
| 14 | Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature, 2016,<br>539, 309-313.                                   | 27.8 | 875       |
| 15 | Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature, 2014, 510, 363-369.                                            | 27.8 | 872       |
| 16 | Transcriptome-wide Mapping Reveals Widespread Dynamic-Regulated Pseudouridylation of ncRNA and mRNA. Cell, 2014, 159, 148-162.                      | 28.9 | 770       |
| 17 | Landscape of X chromosome inactivation across human tissues. Nature, 2017, 550, 244-248.                                                            | 27.8 | 764       |
| 18 | Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nature Methods, 2017, 14, 395-398.                                  | 19.0 | 706       |

RAHUL SATIJA

| #  | Article                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biology, 2018, 19, 224.                    | 8.8  | 674       |
| 20 | The bone marrow microenvironment at single-cell resolution. Nature, 2019, 569, 222-228.                                                                      | 27.8 | 624       |
| 21 | Dynamic regulatory network controlling TH17 cell differentiation. Nature, 2013, 496, 461-468.                                                                | 27.8 | 608       |
| 22 | Single-cell chromatin state analysis with Signac. Nature Methods, 2021, 18, 1333-1341.                                                                       | 19.0 | 595       |
| 23 | High-Resolution Mapping Reveals a Conserved, Widespread, Dynamic mRNA Methylation Program in<br>Yeast Meiosis. Cell, 2013, 155, 1409-1421.                   | 28.9 | 554       |
| 24 | Single-Cell Genomics Unveils Critical Regulators of Th17 Cell Pathogenicity. Cell, 2015, 163, 1400-1412.                                                     | 28.9 | 504       |
| 25 | Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nature Biotechnology, 2014, 32, 479-484.                | 17.5 | 495       |
| 26 | Comparative analysis of RNA sequencing methods for degraded or low-input samples. Nature Methods, 2013, 10, 623-629.                                         | 19.0 | 419       |
| 27 | Dynamic profiling of the protein life cycle in response to pathogens. Science, 2015, 347, 1259038.                                                           | 12.6 | 408       |
| 28 | Developmental diversification of cortical inhibitory interneurons. Nature, 2018, 555, 457-462.                                                               | 27.8 | 393       |
| 29 | A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks. Cell, 2015, 162, 675-686.                                                | 28.9 | 383       |
| 30 | Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nature Methods, 2019, 16, 409-412.                   | 19.0 | 364       |
| 31 | Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature, 2014, 516, 56-61.                                                            | 27.8 | 343       |
| 32 | Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nature Communications, 2018, 9, 791.                | 12.8 | 284       |
| 33 | Pathogen Cell-to-Cell Variability Drives Heterogeneity in Host Immune Responses. Cell, 2015, 162, 1309-1321.                                                 | 28.9 | 255       |
| 34 | Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single<br>cells. Nature Biotechnology, 2021, 39, 1246-1258. | 17.5 | 244       |
| 35 | Root Regeneration Triggers an Embryo-like Sequence Guided by Hormonal Interactions. Cell, 2016, 165, 1721-1733.                                              | 28.9 | 215       |
| 36 | A Generic and Cell-Type-Specific Wound Response Precedes Regeneration in Planarians. Developmental<br>Cell, 2015, 35, 632-645.                               | 7.0  | 184       |

RAHUL SATIJA

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Phenotypic Convergence: Distinct Transcription Factors Regulate Common Terminal Features. Cell, 2018, 174, 622-635.e13.                                                                   | 28.9 | 180       |
| 38 | Heterogeneity in immune responses: from populations to single cells. Trends in Immunology, 2014, 35, 219-229.                                                                             | 6.8  | 166       |
| 39 | Comparison and evaluation of statistical error models for scRNA-seq. Genome Biology, 2022, 23, 27.                                                                                        | 8.8  | 140       |
| 40 | Molecular transitions in early progenitors during human cord blood hematopoiesis. Molecular<br>Systems Biology, 2018, 14, e8041.                                                          | 7.2  | 125       |
| 41 | Human dendritic cells (DCs) are derived from distinct circulating precursors that are precommitted to become CD1c+ or CD141+ DCs. Journal of Experimental Medicine, 2016, 213, 2861-2870. | 8.5  | 124       |
| 42 | A roadmap for the Human Developmental Cell Atlas. Nature, 2021, 597, 196-205.                                                                                                             | 27.8 | 114       |
| 43 | Characterizing the molecular regulation of inhibitory immune checkpoints with multimodal single-cell screens. Nature Genetics, 2021, 53, 322-331.                                         | 21.4 | 96        |
| 44 | The strength and pattern of natural selection on gene expression in rice. Nature, 2020, 578, 572-576.                                                                                     | 27.8 | 92        |
| 45 | Toward a Common Coordinate Framework for the Human Body. Cell, 2019, 179, 1455-1467.                                                                                                      | 28.9 | 81        |
| 46 | A single-cell transcriptional roadmap for cardiopharyngeal fate diversification. Nature Cell Biology,<br>2019, 21, 674-686.                                                               | 10.3 | 78        |
| 47 | Niche-Selective Inhibition of Pathogenic Th17 Cells by Targeting Metabolic Redundancy. Cell, 2020, 182, 641-654.e20.                                                                      | 28.9 | 77        |
| 48 | The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an AT Motif-Driven Axis. Cell, 2015, 162, 607-621.                                                                     | 28.9 | 74        |
| 49 | Kinetics of adult hematopoietic stem cell differentiation in vivo. Journal of Experimental Medicine, 2018, 215, 2815-2832.                                                                | 8.5  | 61        |
| 50 | Single nucleus multi-omics identifies human cortical cell regulatory genome diversity. Cell Genomics,<br>2022, 2, 100107.                                                                 | 6.5  | 58        |
| 51 | Characterizing cellular heterogeneity in chromatin state with scCUT&Tag-pro. Nature<br>Biotechnology, 2022, 40, 1220-1230.                                                                | 17.5 | 46        |
| 52 | The TAGteam motif facilitates binding of 21 sequence-specific transcription factors in the <i>Drosophila</i> embryo. Genome Research, 2012, 22, 656-665.                                  | 5.5  | 44        |
| 53 | Optimized design of single-cell RNA sequencing experiments for cell-type-specific eQTL analysis. Nature<br>Communications, 2020, 11, 5504.                                                | 12.8 | 39        |
| 54 | A latent subset of human hematopoietic stem cells resists regenerative stress to preserve stemness.<br>Nature Immunology, 2021, 22, 723-734.                                              | 14.5 | 26        |

RAHUL SATIJA

| #  | Article                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The Atypical Calpains: Evolutionary Analyses and Roles in Caenorhabditis elegans Cellular<br>Degeneration. PLoS Genetics, 2012, 8, e1002602.                              | 3.5  | 23        |
| 56 | Stochastic models of sequence evolution including insertion—deletion events. Statistical Methods in<br>Medical Research, 2009, 18, 453-485.                               | 1.5  | 22        |
| 57 | Evolutionary systems biology reveals patterns of rice adaptation to drought-prone agro-ecosystems.<br>Plant Cell, 2022, 34, 759-783.                                      | 6.6  | 19        |
| 58 | geneBasis: an iterative approach for unsupervised selection of targeted gene panels from scRNA-seq.<br>Genome Biology, 2021, 22, 333.                                     | 8.8  | 15        |
| 59 | Single-cell analysis reveals key roles for Bcl11a in regulating stem cell fate decisions. Genome Biology, 2015, 16, 199.                                                  | 8.8  | 11        |
| 60 | MERFISHing for spatial context. Trends in Immunology, 2015, 36, 390-391.                                                                                                  | 6.8  | 6         |
| 61 | Strength in numbers from integrated single-cell neuroscience. Nature Biotechnology, 2018, 36, 41-42.                                                                      | 17.5 | 1         |
| 62 | 3017 – A DISTINCT SUBSET OF LATENT LONG-TERM HUMAN HEMATOPOIETIC STEM CELLS RESISTS<br>REGENERATIVE STRESS TO PRESERVES STEMNESS. Experimental Hematology, 2020, 88, S43. | 0.4  | 0         |
| 63 | Divergent Levels of CD112 and INKA1 Define a Subset of Human Hematopoietic Stem Cells That Resists<br>Regenerative Stress to Preserve Stemness. Blood, 2020, 136, 5-5.    | 1.4  | 0         |