Jonathan RodrÃ-guez-FernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2130691/publications.pdf

Version: 2024-02-01

40 papers

740 citations

566801 15 h-index 552369 26 g-index

40 all docs 40 docs citations

40 times ranked

1269 citing authors

#	Article	IF	CITATIONS
1	Electrically Tunable Reactivity of Substrateâ€Supported Cobalt Oxide Nanocrystals. Small, 2022, 18, e2106407.	5.2	5
2	Water dissociation on Mixed Co-Fe oxide bilayer nanoislands on Au(111). Journal of Physics Condensed Matter, 2022, , .	0.7	2
3	The cobalt oxidation state in preferential CO oxidation on CoO _{<i>x</i>} /Pt(111) investigated by <i>operando</i> X-ray photoemission spectroscopy. Physical Chemistry Chemical Physics, 2022, , .	1.3	7
4	Lateral Interfaces between Monolayer MoS2 Edges and Armchair Graphene Nanoribbons on Au(111). ACS Nano, 2021, 15, 6699-6708.	7.3	4
5	Electronic properties of single-layer CoO ₂ /Au(111). 2D Materials, 2021, 8, 035050.	2.0	7
6	Structural Dynamics of Ultrathin Cobalt Oxide Nanoislands under Potential Control. Advanced Functional Materials, 2021, 31, 2009923.	7.8	26
7	The Effect of Fe Dopant Location in Co(Fe)OOH _x Nanoparticles for the Oxygen Evolution Reaction. ACS Nano, 2021, 15, 18226-18236.	7.3	37
8	Site-dependent reactivity of MoS2 nanoparticles in hydrodesulfurization of thiophene. Nature Communications, 2020, 11 , 4369.	5.8	44
9	Metal-Coordination Network vs Charge Transfer Complex: The Importance of the Surface. Journal of Physical Chemistry C, 2020, 124, 7922-7929.	1.5	5
10	Molecular Nanowire Bonding to Epitaxial Single‣ayer MoS 2 by an Onâ€Surface Ullmann Coupling Reaction. Small, 2020, 16, 1906892.	5.2	6
11	Anisotropic iron-doping patterns in two-dimensional cobalt oxide nanoislands on Au(111). Nano Research, 2019, 12, 2364-2372.	5.8	4
12	Basal plane oxygen exchange of epitaxial MoS ₂ without edge oxidation. 2D Materials, 2019, 6, 045013.	2.0	22
13	Structure of CoO _{<i>x</i>} Thin Films on Pt(111) in Oxidation of CO. Journal of Physical Chemistry C, 2019, 123, 17407-17415.	1.5	11
14	Dissociation of water on atomically-defined cobalt oxide nanoislands on Pt(111) and its effect on the adsorption of CO. Journal of Materials Research, 2019, 34, 379-393.	1.2	9
15	Structure and Stability of Au-Supported Layered Cobalt Oxide Nanoislands in Ambient Conditions. Journal of Physical Chemistry C, 2019, 123, 9176-9182.	1.5	14
16	Structural and electronic properties of Fe dopants in cobalt oxide nanoislands on Au(111). Journal of Chemical Physics, 2019, 150, 041731.	1.2	14
17	Sulfur-driven switching of the Ullmann coupling on Au(111). Chemical Communications, 2018, 54, 3621-3624.	2.2	15
18	Phase Transitions of Cobalt Oxide Bilayers on Au(111) and Pt(111): The Role of Edge Sites and Substrate Interactions. Journal of Physical Chemistry B, 2018, 122, 561-571.	1,2	26

#	Article	IF	CITATIONS
19	The Structure of the Cobalt Oxide/Au Catalyst Interface in Electrochemical Water Splitting. Angewandte Chemie - International Edition, 2018, 57, 11893-11897.	7.2	90
20	The Structure of the Cobalt Oxide/Au Catalyst Interface in Electrochemical Water Splitting. Angewandte Chemie, 2018, 130, 12069-12073.	1.6	16
21	Visualizing hydrogen-induced reshaping and edge activation in MoS2 and Co-promoted MoS2 catalyst clusters. Nature Communications, 2018, 9, 2211.	5.8	71
22	Tuning Intermolecular Charge Transfer in Donor–Acceptor Two-Dimensional Crystals on Metal Surfaces. Journal of Physical Chemistry C, 2017, 121, 23505-23510.	1.5	11
23	Long-Range Orientational Self-Assembly, Spatially Controlled Deprotonation, and Off-Centered Metalation of an Expanded Porphyrin. Journal of the American Chemical Society, 2017, 139, 14129-14136.	6.6	23
24	Shell or Dots â^' Precursor Controlled Morphology of Auâ€"Se Deposits on CdSe Nanoparticles. Chemistry of Materials, 2016, 28, 2704-2714.	3.2	8
25	Thermal Transition from a Disordered, 2D Network to a Regular, 1D, Fe(II)–DCNQI Coordination Network. Journal of Physical Chemistry C, 2016, 120, 16712-16721.	1.5	4
26	Thermal selectivity of intermolecular versus intramolecular reactions on surfaces. Nature Communications, 2016, 7, 11002.	5.8	66
27	Temperature-controlled metal/ligand stoichiometric ratio in Ag-TCNE coordination networks. Journal of Chemical Physics, 2015, 142, 101930.	1.2	28
28	Charge transfer-assisted self-limited decyanation reaction of TCNQ-type electron acceptors on Cu(100). Chemical Communications, 2014, 50, 833-835.	2.2	16
29	Charge-Transfer-Induced Isomerization of DCNQI on Cu(100). Journal of Physical Chemistry C, 2014, 118, 27388-27392.	1.5	3
30	Formation of a surface covalent organic framework based on polyester condensation. Chemical Communications, 2012, 48, 6779.	2.2	82
31	Formation of Self-Assembled Chains of Tetrathiafulvalene on a Cu(100) Surface. Journal of Physical Chemistry A, 2011, 115, 13080-13087.	1.1	6
32	Growth of Bi doped cadmium zinc telluride single crystals by Bridgman oscillation method and its structural, optical, and electrical analyses. Journal of Applied Physics, 2010, 107, .	1.1	9
33	Development of CdZnTe doped with Bi for gamma radiation detection. CrystEngComm, 2010, 12, 507-510.	1.3	4
34	Relationship between the cathodoluminescence emission and resistivity in In doped CdZnTe crystals. Journal of Applied Physics, 2009, 106, 044901.	1.1	6
35	Sub-bandgap photoluminescence from as-grown and annealed layers of CdTe. Superlattices and Microstructures, 2009, 45, 228-233.	1.4	4
36	Influence of thermal environments on the growth of bulk cadmium zinc telluride (CZT) single crystals. Journal of Crystal Growth, 2009, 311, 1264-1267.	0.7	17

#	Article	IF	CITATIONS
37	Growth and characterization of CdTe:Ge:Yb. Journal of Crystal Growth, 2008, 310, 2076-2079.	0.7	1
38	Effect of source composition on the vapor phase epitaxy of Cd1â^xZnxTe large-area layers. Journal of Crystal Growth, 2008, 310, 1669-1673.	0.7	2
39	Cadmium telluride: a silicon-compatible optical material as an alternative technology for building all-optical photonic devices. , 2008, , .		3
40	Effect of Yb concentration on the resistivity and lifetime of CdTe:Ge:Yb codoped crystals. Applied Physics Letters, 2007, 91, .	1.5	12