Makoto Gemmei-Ide

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2130485/publications.pdf

Version: 2024-02-01

52 papers

1,274 citations

394421 19 h-index 35 g-index

54 all docs

54 does citations

54 times ranked 1163 citing authors

#	Article	IF	CITATIONS
1	Mid-infrared Spectroscopic Analysis of Water Structure in Solid Polymers. Bunseki Kagaku, 2022, 71, 235-246.	0.2	O
2	Applicability of Internal Standardization with Yttrium to the Solid-phase Extraction of Trace Elements in Groundwater and Wastewater Using an Aminocarboxylic Acid-type Chelating Resin. Analytical Sciences, 2021, 37, 1147-1156.	1.6	3
3	Molecular Structure and Vibrational Spectra of Water Molecules Sorbed in Poly(2-methoxyethylacrylate) Revealed by Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2021, 125, 12095-12103.	2.6	6
4	Potential of Carboxymethylated Polyallylamine as a Functional Group on Chelating Resin for Solid-Phase Extraction of Trace Elements. Analytical Sciences, 2020, 36, 583-588.	1.6	2
5	Different Insights of Water Structure in Polymer–Water Systems Observed by Vibrational Spectroscopic and Calorimetric Methods. Oleoscience, 2020, 20, 329-336.	0.0	O
6	Effect of Coexisting Organic Compounds on the Sorption of Inorganic Mercury(II) with Iron(II) Sulfide. Bunseki Kagaku, 2020, 69, 647-651.	0.2	0
7	Phosphomethylated Polyethyleneimine-immobilized Chelating Resin: Role of Phosphomethylation Rate on Solid-Phase Extraction of Trace Elements. Analytical Sciences, 2019, 35, 413-419.	1.6	9
8	Thermal Decomposition Behavior of a Chelating Resin Immobilizing Carboxymethylated Polyethyleneimine: Possibility of Estimation of Carboxymethylation Rate. Analytical Sciences, 2019, 35, 1161-1164.	1.6	0
9	A porous sintered material consisting of Presep PolyChelate as a chelating resin and particulate polyethylene as a thermoplastic binder for solid-phase extraction of trace elements. Talanta, 2018, 188, 665-670.	5.5	11
10	Diffusion-Controlled Recrystallization of Water Sorbed into Poly(meth)acrylates Revealed by Variable-Temperature Mid-Infrared Spectroscopy and Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2017, 121, 5133-5141.	2.6	20
11	Improvement of Chromium(VI) Extraction from Acidic Solutions Using a Poly(vinyl chloride)-based Polymer Inclusion Membrane with Aliquat 336 as the Carrier. Analytical Sciences, 2017, 33, 643-646.	1.6	13
12	Chelating resin immobilizing carboxymethylated polyethyleneimine for selective solid-phase extraction of trace elements: Effect of the molecular weight of polyethyleneimine and its carboxymethylation rate. Talanta, 2016, 147, 342-350.	5.5	24
13	Mid-Infrared Spectroscopic Investigation of the Perfect Vitrification of Poly(ethylene glycol) Aqueous Solutions. Langmuir, 2015, 31, 10881-10887.	3.5	13
14	Water structure at the interfaces between a zwitterionic self-assembled monolayer/liquid water evaluated by sum-frequency generation spectroscopy. Colloids and Surfaces B: Biointerfaces, 2015, 135, 267-273.	5.0	19
15	Sum-frequency generation analyses of the structure of water at amphoteric SAM–liquid water interfaces. Colloids and Surfaces B: Biointerfaces, 2014, 121, 264-269.	5. O	12
16	Structure of water at zwitterionic copolymer film–liquid water interfaces as examined by the sum frequency generation method. Colloids and Surfaces B: Biointerfaces, 2014, 113, 361-367.	5 . O	40
17	The use of a polymer inclusion membrane as a sorbent for online preconcentration in the flow injection determination of thiocyanate impurity in ammonium sulfate fertilizer. Talanta, 2014, 129, 560-564.	5.5	30
18	Solid-phase Extraction of Gold(III) Using a Fibrous Adsorbent Immobilizing Pentaethylenehexamine. Bunseki Kagaku, 2014, 63, 785-789.	0.2	0

#	Article	IF	Citations
19	Chelating Resins., 2014, , 1-10.		3
20	Two-Step Recrystallization of Water in Concentrated Aqueous Solution of Poly(ethylene glycol). Journal of Physical Chemistry B, 2013, 117, 2188-2194.	2.6	10
21	Potential of Presep (sup) \hat{A}^{\otimes} (sup) PolyChelate as a Chelating Resin: Comparative Study with Some Aminocarboxylic Acid-type Resins. Analytical Sciences, 2013, 29, 1107-1112.	1.6	22
22	Recrystallization of Water in Non-Water-Soluble (Meth)Acrylate Polymers Is Not Rare and Is Not Devitrification. Journal of Physical Chemistry B, 2012, 116, 1850-1857.	2.6	16
23	Structure of water in the vicinity of a zwitterionic polymer brush as examined by sum frequency generation method. Colloids and Surfaces B: Biointerfaces, 2012, 100, 126-132.	5.0	27
24	Sum frequency generation study on the structure of water in the vicinity of an amphoteric polymer brush. Colloids and Surfaces B: Biointerfaces, 2012, 91, 215-218.	5.0	24
25	Binding of \hat{l}^2 -amyloid to sulfated sugar residues in a polymer brush. Colloids and Surfaces B: Biointerfaces, 2012, 93, 219-225.	5.0	11
26	Correlation between Crystallization Behavior of Water in Polymer Solid and Their Biocompatibility. Hyomen Kagaku, 2012, 33, 15-20.	0.0	0
27	Binding of \hat{l}^2 -secretase to a peptide inhibitor-carrying SAM. Colloids and Surfaces B: Biointerfaces, 2010, 78, 155-162.	5.0	2
28	Thermally Latent Water in a Polymer Matrix. Journal of Physical Chemistry B, 2010, 114, 4310-4312.	2.6	6
29	Structure of Water in the Vicinity of Amphoteric Polymers as Revealed by Vibrational Spectroscopy. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1877-1893.	3.5	10
30	Antiâ€Biofouling Properties of Polymers with a Carboxybetaine Moiety. Macromolecular Bioscience, 2009, 9, 63-70.	4.1	86
31	Effect of end groups of poly(n-butyl methacrylate) on its biocompatibility. Colloids and Surfaces B: Biointerfaces, 2009, 74, 45-50.	5.0	6
32	Structure of Water Incorporated in Amphoteric Polymer Thin Films as Revealed by FTâ€IR Spectroscopy. Macromolecular Bioscience, 2008, 8, 77-85.	4.1	32
33	Crystal Growth of Ice <i>I</i> _h by Revapor-Deposition and Diffusion Suppression of Monomolecular Water in a Polymer Solid: Spectroscopic Observation of Phase Transition of Water Sorbed into Solid Polystyrene. Journal of Physical Chemistry B, 2008, 112, 13499-13502.	2.6	13
34	Recrystallization of Water in a Non-Water-Soluble Polymer Examined by Fourier Transform Infrared Spectroscopy: Poly(2-methoxyethylacrylate) with Low Water Content. Journal of Physical Chemistry B, 2008, 112, 12863-12866.	2.6	18
35	Spectroscopic Evidence of Phase Transition of Monomolecular Water in Solid Polystyrene. Journal of Physical Chemistry B, 2008, 112, 2764-2766.	2.6	9
36	Effect of Zwitterionic Polymers on Wound Healing. Biological and Pharmaceutical Bulletin, 2008, 31, 2309-2315.	1.4	40

#	Article	IF	CITATIONS
37	Breaking of the Supercooled State of Water by a Nanocavity with Disordered Atomic Configuration I:Â Freezing Behavior of Sorbed Water into Polymethylmethacrylate Film As Examined by Fourier Transform Infrared Spectroscopy. Journal of Physical Chemistry B, 2007, 111, 5533-5535.	2.6	6
38	Resistance of surface-confined telomers with pendent glucosylurea groups against non-specific adsorption of proteins. Colloids and Surfaces B: Biointerfaces, 2007, 56, 188-196.	5.0	4
39	Structure of water in the vicinity of amphoteric polymers as revealed by Raman spectroscopy. Journal of Colloid and Interface Science, 2007, 313, 461-468.	9.4	22
40	Raman spectroscopic study of the structure of water in aqueous solutions of amphoteric polymers. Physical Chemistry Chemical Physics, 2006, 8, 1178.	2.8	23
41	State of Irremovable Water in Solid Polymer Films Examined by Fourier Transform Infrared Spectroscopy I:Â Poly(Ethylene Glycol) Dimethyl Ether. Langmuir, 2006, 22, 2422-2425.	3.5	34
42	Interaction Between Polymer Chains Covalently Fixed to Single-Walled Carbon Nanotubes. Macromolecular Chemistry and Physics, 2006, 207, 812-819.	2.2	13
43	Structure of Water Incorporated in Sulfobetaine Polymer Films as Studied by ATR-FTIR. Macromolecular Bioscience, 2005, 5, 314-321.	4.1	157
44	Raman spectroscopic study on the structure of water in aqueous solution of -amino acids. Journal of Colloid and Interface Science, 2005, 283, 452-458.	9.4	16
45	Orientational Effect of Surface-Confined Cyclodextrin on the Inclusion of Bisphenols. Langmuir, 2005, 21, 1314-1321.	3.5	37
46	Inclusion of Bisphenols by a Self-Assembled Monolayer of Thiolated Calix[6]arene on a Gold Surface. Environmental Science & En	10.0	15
47	Correlation between the Structure of Water in the Vicinity of Carboxybetaine Polymers and Their Blood-Compatibility. Langmuir, 2005, 21, 11932-11940.	3.5	157
48	Effect of Macrocycles on the Temperature-Responsiveness of Poly[(methoxy diethylene glycol) Tj ETQq0 0 0 rgB	T /Qverloc	k 10 Tf 50 30
49	Raman spectroscopic study on the structure of water in aqueous solution of zwitterionic surfactants. Journal of Colloid and Interface Science, 2004, 269, 459-465.	9.4	10
50	Accumulation of phenyl boronic acid-carrying telomers on a gold surface. Journal of Colloid and Interface Science, 2004, 273, 106-114.	9.4	14
51	Structure of Water in the Vicinity of Phospholipid Analogue Copolymers As Studied by Vibrational Spectroscopyâ€. Langmuir, 2003, 19, 10260-10266.	3.5	144
52	Inclusion of Bisphenols by Cyclodextrin Derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2003, 47, 83-90.	1.6	27