Buxing Han

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2130343/buxing-han-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

559	26,253 citations	81	137
papers		h-index	g-index
599	30,922	8.5	7.37
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
559	Highly effective and chemoselective hydrodeoxygenation of aromatic alcohols <i>Chemical Science</i> , 2022 , 13, 1629-1635	9.4	1
558	Reduction of CO 2 to Formic Acid 2022 , 1003-1026		0
557	Cyclization Reactions with CO 2 2022 , 973-1001		O
556	Anchoring Ionic Liquid in Copper Electrocatalyst for Improving CO2 Conversion to Ethylene <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	3
555	Synthesis of higher carboxylic acids via reaction of polyols with CO2 and H2. <i>Chem Catalysis</i> , 2022 , 2, 114-124		3
554	Methylation Reactions with CO 2 2022 , 1185-1215		0
553	Boosting nitrate electroreduction to ammonia on NbOxvia constructing oxygen vacancies. <i>Green Chemistry</i> , 2022 , 24, 1090-1095	10	3
552	Biomass: Renewable carbon resource for chemical and energy industry Innovation(China), 2022, 3, 100	184 .8	1
551	Crystal-phase engineering of PdCu nanoalloys facilitates selective hydrodeoxygenation at room temperature <i>Innovation(China)</i> , 2022 , 3, 100189	17.8	O
550	Ionic liquid-based electrolytes for CO electroreduction and CO electroorganic transformation <i>National Science Review</i> , 2022 , 9, nwab022	10.8	7
549	Catalytic self-transfer hydrogenolysis of lignin with endogenous hydrogen: road to the carbon-neutral future <i>Chemical Society Reviews</i> , 2022 ,	58.5	6
548	Single atom and defect engineering of CuO for efficient electrochemical reduction of CO 2 to C 2 H 4. <i>SmartMat</i> , 2022 , 3, 194-205	22.8	1
547	Bright, Magnetic NIR-II Quantum Dot Probe for Sensitive Dual-Modality Imaging and Intensive Combination Therapy of Cancer <i>ACS Nano</i> , 2022 ,	16.7	2
546	In situ dual doping for constructing efficient CO-to-methanol electrocatalysts <i>Nature Communications</i> , 2022 , 13, 1965	17.4	4
545	Solid surface frustrated Lewis pair constructed on layered AlOOH for hydrogenation reaction <i>Nature Communications</i> , 2022 , 13, 2320	17.4	3
544	Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling Towards Carbon Neutrality <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	13
543	Hydrothermal synthesis of long-chain hydrocarbons up to C with NaHCO-assisted stabilizing cobalt <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	7

(2021-2021)

542	Interface engineered Co, Ni, Fe, Cu oxide hybrids with biphasic structures for water splitting with enhanced activity. <i>Journal of Colloid and Interface Science</i> , 2021 , 609, 149-157	9.3	О	
541	A CO2-mediated base catalysis approach for the hydration of triple bonds in ionic liquids. <i>Green Chemistry</i> , 2021 , 23, 9870-9875	10	2	
540	Organic amine mediated cleavage of C-C bonds in lignin and its platform molecules <i>Chemical Science</i> , 2021 , 12, 15110-15115	9.4	О	
539	Alcohol promoted N-methylation of anilines with CO2/H2 over a cobalt catalyst under mild conditions. <i>Green Chemistry</i> , 2021 , 23, 9147-9153	10	O	
538	Hydrogen-Bonding-Mediated Selective Hydrogenation of Aromatic Ketones over Pd/C in Ionic Liquids at Room Temperature. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 14216-14223	8.3	O	
537	Hierarchical Metal P olymer Hybrids for Enhanced CO2 Electroreduction. <i>Angewandte Chemie</i> , 2021 , 133, 11072-11077	3.6	4	
536	Hierarchical Metal-Polymer Hybrids for Enhanced CO Electroreduction. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 10977-10982	16.4	10	
535	Atomic Indium Catalysts for Switching CO Electroreduction Products from Formate to CO. <i>Journal of the American Chemical Society</i> , 2021 , 143, 6877-6885	16.4	42	
534	Synthesis of C Chemicals from CO and H via C-C Bond Formation. <i>Accounts of Chemical Research</i> , 2021 , 54, 2467-2476	24.3	9	
533	The Impact of Structural Defects on Iodine Adsorption in UiO-66. <i>Chemistry</i> , 2021 , 3, 525-531	2.1	3	
532	Fabrication of Superamphiphilic Carbon Using Lignosulfonate for Enhancing Selective Hydrogenation Reactions in Pickering Emulsions. <i>ACS Applied Materials & Discounty of the Picker Section Section</i> , 13, 252	34-252	48	
531	Production of Piperidine and Lactam Chemicals from Biomass-Derived Triacetic Acid Lactone. <i>Angewandte Chemie</i> , 2021 , 133, 14526-14530	3.6		
530	Hydrogen-bond donor and acceptor cooperative catalysis strategy for cyclic dehydration of diols to access O-heterocycles. <i>Science Advances</i> , 2021 , 7,	14.3	6	
529	Production of Piperidine and Lactam Chemicals from Biomass-Derived Triacetic Acid Lactone. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 14405-14409	16.4	1	
528	Support Effect of Ru Catalysts for Efficient Conversion of Biomass-Derived 2,5-Hexanedione to Different Products. <i>ACS Catalysis</i> , 2021 , 11, 7685-7693	13.1	7	
527	Rational design of nanocatalysts for ambient ammonia electrosynthesis. <i>Pure and Applied Chemistry</i> , 2021 ,	2.1	2	
526	Ionic-Liquid-Catalyzed Approaches under Metal-Free Conditions. <i>Accounts of Chemical Research</i> , 2021 ,	24.3	13	

524	Palladium-catalyzed synthesis of 4-cyclohexylmorpholines from reductive coupling of aryl ethers and lignin model compounds with morpholines. <i>Green Chemistry</i> , 2021 , 23, 268-273	10	4
523	Ultra-thin g-CN/MFM-300(Fe) heterojunctions for photocatalytic aerobic oxidation of benzylic carbon centers. <i>Materials Advances</i> , 2021 , 2, 5144-5149	3.3	3
522	Levulinic acid hydrogenation to Evalerolactone over single Ru atoms on a TiO2@nitrogen doped carbon support. <i>Green Chemistry</i> , 2021 , 23, 1621-1627	10	14
521	Selective hydrogenation of 5-(hydroxymethyl)furfural to 5-methylfurfural over single atomic metals anchored on NbO. <i>Nature Communications</i> , 2021 , 12, 584	17.4	18
520	Robust selenium-doped carbon nitride nanotubes for selective electrocatalytic oxidation of furan compounds to maleic acid. <i>Chemical Science</i> , 2021 , 12, 6342-6349	9.4	5
519	Halogen-free fixation of carbon dioxide into cyclic carbonates via bifunctional organocatalysts. <i>Green Chemistry</i> , 2021 , 23, 1147-1153	10	13
518	Emerging heterogeneous catalysts for biomass conversion: studies of the reaction mechanism. <i>Chemical Society Reviews</i> , 2021 , 50, 11270-11292	58.5	15
517	The study of surface species and structures of oxide-derived copper catalysts for electrochemical CO reduction <i>Chemical Science</i> , 2021 , 12, 5938-5943	9.4	7
516	Monomeric vanadium oxide: a very efficient species for promoting aerobic oxidative dehydrogenation of N-heterocycles. <i>New Journal of Chemistry</i> , 2021 , 45, 431-437	3.6	О
515	Quasi-square-shaped cadmium hydroxide nanocatalysts for electrochemical CO reduction with high efficiency. <i>Chemical Science</i> , 2021 , 12, 11914-11920	9.4	Ο
514	Electrochemical Reduction of Carbon Dioxide to Ethanol: An Approach to Transforming Greenhouse Gas to Fuel Source. <i>Chemistry - an Asian Journal</i> , 2021 , 16, 588-603	4.5	4
513	Control of zeolite microenvironment for propene synthesis from methanol. <i>Nature Communications</i> , 2021 , 12, 822	17.4	5
512	Liquid fuel synthesis via CO2 hydrogenation by coupling homogeneous and heterogeneous catalysis. <i>CheM</i> , 2021 , 7, 726-737	16.2	13
511	Sustainable production of benzene from lignin. <i>Nature Communications</i> , 2021 , 12, 4534	17.4	19
510	Zn-N sites on N-doped carbon for aerobic oxidative cleavage and esterification of C(CO)-C bonds. <i>Nature Communications</i> , 2021 , 12, 4823	17.4	18
509	Highly Efficient Oxidative Cyanation of Aldehydes to Nitriles over Se,S,N-tri-Doped Hierarchically Porous Carbon Nanosheets. <i>Angewandte Chemie</i> , 2021 , 133, 21649-21655	3.6	
508	Boosting CO2 Electroreduction over a Cadmium Single-Atom Catalyst by Tuning of the Axial Coordination Structure. <i>Angewandte Chemie</i> , 2021 , 133, 20971-20978	3.6	2
507	Selective Hydrogenolysis of Lignin Model Compounds to Aromatics over a Cobalt Nanoparticle Catalyst. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 11862-11871	8.3	2

(2020-2021)

506	Highly Efficient Oxidative Cyanation of Aldehydes to Nitriles over Se,S,N-tri-Doped Hierarchically Porous Carbon Nanosheets. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 21479-21485	16.4	7
505	Highly Efficient CO2 Electroreduction to Methanol through Atomically Dispersed Sn Coupled with Defective CuO Catalysts. <i>Angewandte Chemie</i> , 2021 , 133, 22150-22158	3.6	O
504	Highly Efficient CO Electroreduction to Methanol through Atomically Dispersed Sn Coupled with Defective CuO Catalysts. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 21979-21987	16.4	16
503	Boosting CO Electroreduction over a Cadmium Single-Atom Catalyst by Tuning of the Axial Coordination Structure. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20803-20810	16.4	14
502	Copper/Carbon Heterogenous Interfaces for Enhanced Selective Electrocatalytic Reduction of CO to Formate. <i>Small</i> , 2021 , 17, e2102629	11	7
501	Photocatalytic carbon dioxide reduction coupled with benzylamine oxidation over Zn-Bi2WO6 microflowers. <i>Green Chemistry</i> , 2021 , 23, 2913-2917	10	5
500	Low temperature methanation of CO over an amorphous cobalt-based catalyst. <i>Chemical Science</i> , 2021 , 12, 3937-3943	9.4	8
499	Continuous-flow formic acid production from the hydrogenation of CO2 without any base. <i>Green Chemistry</i> , 2021 , 23, 1978-1982	10	9
498	Efficient electroreduction of CO to C products on CeO modified CuO. Chemical Science, 2021, 12, 6638-	6 6:4 5	22
497	Amide-bridged conjugated organic polymers: efficient metal-free catalysts for visible-light-driven CO reduction with HO to CO. <i>Chemical Science</i> , 2021 , 12, 11548-11553	9.4	3
496	Superamphiphilic carbon from sawdust activated by oxygen/argon mixtures promoting the oxidation of benzyl alcohol in Pickering emulsion. <i>Green Chemistry</i> , 2021 , 23, 6341-6348	10	О
495	Highly efficient Meerwein B onndorf V erley reductions over a robust zirconium-organoboronic acid hybrid. <i>Green Chemistry</i> , 2021 , 23, 1259-1265	10	11
494	Selective valorization of lignin to phenol by direct transformation of C-C and C-O bonds. <i>Science Advances</i> , 2020 , 6,	14.3	22
493	Dehydroxyalkylative halogenation of C(aryl)-C bonds of aryl alcohols. <i>Chemical Communications</i> , 2020 , 56, 7120-7123	5.8	2
492	Improved photocatalytic performance of metal-organic frameworks for CO conversion by ligand modification. <i>Chemical Communications</i> , 2020 , 56, 7637-7640	5.8	11
491	Product-oriented Direct Cleavage of Chemical Linkages in Lignin. <i>ChemSusChem</i> , 2020 , 13, 4367-4381	8.3	23
490	Visible Light-Driven Photoreduction of CO2 to CH4 over TiO2 Using a Multiple-Site Ionic Liquid as an Absorbent and Photosensitizer. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 9088-9094	8.3	11
489	Highly Efficient Electroreduction of CO2 to C2+ Alcohols on Heterogeneous Dual Active Sites. <i>Angewandte Chemie</i> , 2020 , 132, 16601	3.6	2

488	Ambient-Temperature Synthesis of Primary Amines via Reductive Amination of Carbonyl Compounds. <i>ACS Catalysis</i> , 2020 , 10, 7763-7772	13.1	24
487	Supercritical CO2-constructed intralayer [Bi2O2]2+ structural distortion for enhanced CO2 electroreduction. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 13320-13327	13	10
486	Electroreduction of CO in Ionic Liquid-Based Electrolytes. Innovation(China), 2020, 1, 100016	17.8	42
485	Highly Efficient Electroreduction of CO to C2+ Alcohols on Heterogeneous Dual Active Sites. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 16459-16464	16.4	61
484	CO controls the oriented growth of metal-organic framework with highly accessible active sites. <i>Nature Communications</i> , 2020 , 11, 1431	17.4	26
483	Improved photocatalytic performance of covalent organic frameworks by nanostructure construction. <i>Chemical Communications</i> , 2020 , 56, 4567-4570	5.8	15
482	Hollow Metal Drganic-Framework-Mediated In Situ Architecture of Copper Dendrites for Enhanced CO2 Electroreduction. <i>Angewandte Chemie</i> , 2020 , 132, 8981-8986	3.6	8
481	Efficient Solvent-Free Synthesis of Cyclic Carbonates from the Cycloaddition of Carbon Dioxide and Epoxides Catalyzed by New Imidazolinium Functionalized Metal Complexes Under 0.1 MPa. <i>Catalysis Letters</i> , 2020 , 150, 2537-2548	2.8	5
480	Fabrication of NH2-MIL-125 nanocrystals for high performance photocatalytic oxidation. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 2823-2830	5.8	18
479	Synthesis of Bis(trimethylsilyl)acetylene (BTMSA) by Direct Reaction of CaC2 with N-(trimethylsilyl)imidazole. <i>ChemistrySelect</i> , 2020 , 5, 3644-3646	1.8	2
478	Boosting CO Electroreduction on N,P-Co-doped Carbon Aerogels. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11123-11129	16.4	70
477	Ordered-Mesoporous-Carbon-Confined Pb/PbO Composites: Superior Electrocatalysts for CO Reduction. <i>ChemSusChem</i> , 2020 , 13, 6346-6352	8.3	5
476	Supercritical CO2 produces the visible-light-responsive TiO2/COF heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution. <i>Nano Research</i> , 2020 , 13, 983-988	10	13
475	Hollow Metal-Organic-Framework-Mediated In Situ Architecture of Copper Dendrites for Enhanced CO Electroreduction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8896-8901	16.4	51
474	CO2 Hydrogenation to Formate Catalyzed by Ru Coordinated with a N,P-Containing Polymer. <i>ACS Catalysis</i> , 2020 , 10, 8557-8566	13.1	18
473	Water-mediated phase-change composite electrolyte. <i>Green Energy and Environment</i> , 2020 , 5, 249-250	5.7	O
472	Selective hydrogenation of aromatic furfurals into aliphatic tetrahydrofurfural derivatives. <i>Green Chemistry</i> , 2020 , 22, 4937-4942	10	13
471	Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene. <i>Nano Research</i> , 2020 , 13, 768-7	7740	31

The production of 4-ethyltoluene via directional valorization of lignin. Green Chemistry, 2020, 22, 2191-2196 470 5 Metal Ionic Liquids for the Rapid Chemical Fixation of CO2 under Ambient Conditions. 469 5.2 11 ChemCatChem, 2020, 12, 1963-1967 Selective aerobic oxidation of cyclic ethers to lactones over Au/CeO without any additives. 468 5.8 4 Chemical Communications, 2020, 56, 2638-2641 467 Boosting CO2 Electroreduction on N,P-Co-doped Carbon Aerogels. Angewandte Chemie, 2020, 132, 11216611222) Biomass-derived metal Brganic hybrids for CO2 transformation under ambient conditions. Green 466 8 10 Chemistry, 2020, 22, 2846-2851 Efficient electrocatalytic reduction of carbon dioxide to ethylene on copperIntimony bimetallic 465 11.3 17 alloy catalyst. Chinese Journal of Catalysis, 2020, 41, 1091-1098 Selective electrochemical reduction of carbon dioxide to ethanol a relay catalytic platform. 464 18 9.4 Chemical Science, **2020**, 11, 5098-5104 Hydrogen-Bonding Catalyzed Ring-Closing CD/CD Metathesis of Aliphatic Ethers over Ionic 6 463 3.6 Liquid under Metal-Free Conditions. Angewandte Chemie, 2020, 132, 11948-11953 Enhanced CO2 electroreduction to ethylene via strong metal-support interaction. Green Energy and 462 5.7 4 Environment, 2020, A strategy to control the grain boundary density and Cu+/Cu0 ratio of Cu-based catalysts for 461 27 efficient electroreduction of CO2 to C2 products. Green Chemistry, 2020, 22, 1572-1576 Ambient reductive synthesis of N-heterocyclic compounds over cellulose-derived carbon supported 8 460 10 Pt nanocatalyst under H2 atmosphere. Green Chemistry, 2020, 22, 3820-3826 Selenium-Doped Hierarchically Porous Carbon Nanosheets as an Efficient Metal-Free 15.6 459 Electrocatalyst for CO2 Reduction. Advanced Functional Materials, 2020, 30, 1906194 Enhancing the electrocatalytic activity of CoO for the oxidation of 5-hydroxymethylfurfural by 458 10 55 introducing oxygen vacancies. Green Chemistry, 2020, 22, 843-849 Electrosynthesis of a Defective Indium Selenide with 3D Structure on a Substrate for Tunable CO2 3.6 19 457 Electroreduction to Syngas. Angewandte Chemie, 2020, 132, 2374-2379 Electrosynthesis of a Defective Indium Selenide with 3D Structure on a Substrate for Tunable CO 456 16.4 44 Electroreduction to Syngas. Angewandte Chemie - International Edition, 2020, 59, 2354-2359 Aerobic Oxidative Cleavage and Esterification of C(OH) Bonds. CheM, 2020, 6, 3288-3296 16.2 21 455 Quantitative Electro-Reduction of CO to Liquid Fuel over Electro-Synthesized Metal-Organic 16.4 26 454 Frameworks. Journal of the American Chemical Society, 2020, 142, 17384-17392 Recent advances in the coupling of CO2 and epoxides into cyclic carbonates under halogen-free 22 453 condition. Green Chemical Engineering, 2020, 1, 82-93

452	Electrodeposited CuPd bimetallic catalysts for the selective electroreduction of CO2 to ethylene. <i>Green Chemistry</i> , 2020 , 22, 7560-7565	10	11
451	Highly Electrocatalytic Ethylene Production from CO on Nanodefective Cu Nanosheets. <i>Journal of the American Chemical Society</i> , 2020 , 142, 13606-13613	16.4	106
450	A Synthetic Strategy of Ultrathin High-DAntimony Oxide Single Crystals. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 721-722	2.2	0
449	Improved catalytic performance of Co-MOF-74 by nanostructure construction. <i>Green Chemistry</i> , 2020 , 22, 5995-6000	10	12
448	Highly Selective CO2 Electroreduction to CO on Cuto Bimetallic Catalysts. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 12561-12567	8.3	10
447	Hierarchically macro-meso-microporous metal-organic framework for photocatalytic oxidation. <i>Chemical Communications</i> , 2020 , 56, 10754-10757	5.8	6
446	Electro-reduction of carbon dioxide at low over-potential at a metal-organic framework decorated cathode. <i>Nature Communications</i> , 2020 , 11, 5464	17.4	21
445	Synthesis of Sn4P3/reduced graphene oxide nanocomposites as highly efficient electrocatalysts for CO2 reduction. <i>Green Chemistry</i> , 2020 , 22, 6804-6808	10	9
444	Effect of the coordination environment of Cu in Cu2O on the electroreduction of CO2 to ethylene. <i>Green Chemistry</i> , 2020 , 22, 6340-6344	10	8
443	Stabilization of Cu+ by tuning a CuOtteO2 interface for selective electrochemical CO2 reduction to ethylene. <i>Green Chemistry</i> , 2020 , 22, 6540-6546	10	34
442	Highly Efficient Synthesis of Amino Acids by Amination of Bio-Derived Hydroxy Acids with Ammonia over Ru Supported on N-Doped Carbon Nanotubes. <i>ChemSusChem</i> , 2020 , 13, 5683-5689	8.3	5
441	Hydrogen-Bonding Catalyzed Ring-Closing C-O/C-O Metathesis of Aliphatic Ethers over Ionic Liquid under Metal-Free Conditions. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11850-11855	16.4	17
440	Direct Z-Scheme Heterojunction of SnS /Sulfur-Bridged Covalent Triazine Frameworks for Visible-Light-Driven CO Photoreduction. <i>ChemSusChem</i> , 2020 , 13, 6278-6283	8.3	13
439	Boron-doped CuO nanobundles for electroreduction of carbon dioxide to ethylene. <i>Green Chemistry</i> , 2020 , 22, 2750-2754	10	14
438	Synthesis of thioethers, arenes and arylated benzoxazoles by transformation of the C(aryl)-C bond of aryl alcohols. <i>Chemical Science</i> , 2020 , 11, 7634-7640	9.4	3
437	Carbon dioxide electroreduction to C products over copper-cuprous oxide derived from electrosynthesized copper complex. <i>Nature Communications</i> , 2019 , 10, 3851	17.4	159
436	Selective synthesis of formamides, 1,2-bis(N-heterocyclic)ethanes and methylamines from cyclic amines and CO/H catalyzed by an ionic liquid-Pd/C system. <i>Chemical Science</i> , 2019 , 10, 9822-9828	9.4	11
435	Fabrication of 2D metalBrganic framework nanosheets with tailorable thickness using bio-based surfactants and their application in catalysis. <i>Green Chemistry</i> , 2019 , 21, 54-58	10	48

(2019-2019)

434	Highly efficient hydrogenation of levulinic acid into 2-methyltetrahydrofuran over Nitu/Al2O3trO2 bifunctional catalysts. <i>Green Chemistry</i> , 2019 , 21, 606-613	10	45	
433	Efficient synthesis of ethanol by methanol homologation using CO2 at lower temperature. <i>Green Chemistry</i> , 2019 , 21, 589-596	10	14	
432	MetalBrganic framework-derived indiumBopper bimetallic oxide catalysts for selective aqueous electroreduction of CO2. <i>Green Chemistry</i> , 2019 , 21, 503-508	10	34	
431	Selective utilization of methoxy groups in lignin for -methylation reaction of anilines. <i>Chemical Science</i> , 2019 , 10, 1082-1088	9.4	21	
430	Surface engineering in PbS partial oxidation: towards an advanced electrocatalyst for reduction of levulinic acid to Evalerolactone. <i>Chemical Science</i> , 2019 , 10, 1754-1759	9.4	10	
429	Synthesis of acetamides using CO2, methanol, H2 and amines. <i>Green Chemistry</i> , 2019 , 21, 233-237	10	11	
428	Conversion of levulinic acid to Evalerolactone over ultra-thin TiO2 nanosheets decorated with ultrasmall Ru nanoparticle catalysts under mild conditions. <i>Green Chemistry</i> , 2019 , 21, 770-774	10	39	
427	Enhanced CO electroreduction interaction of dangling S bonds and Co sites in cobalt phthalocyanine/ZnInS hybrids. <i>Chemical Science</i> , 2019 , 10, 1659-1663	9.4	31	
426	Highly Mesoporous Ru-MIL-125-NH2 Produced by Supercritical Fluid for Efficient Photocatalytic Hydrogen Production. <i>ACS Applied Energy Materials</i> , 2019 , 2, 4964-4970	6.1	23	
425	Synthesis of liquid fuel via direct hydrogenation of CO. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 12654-12659	11.5	74	
424	A fully heterogeneous catalyst Br-LDH for the cycloaddition reactions of CO with epoxides. <i>Chemical Communications</i> , 2019 , 55, 6942-6945	5.8	26	
423	Metal Ionic Liquids Produce Metal-Dispersed Carbon-Nitrogen Networks for Efficient CO2 Electroreduction. <i>ChemCatChem</i> , 2019 , 11, 3166-3170	5.2	3	
422	Enhancing electroreduction of CO2 over Bi2WO6 nanosheets by oxygen vacancies. <i>Green Chemistry</i> , 2019 , 21, 2589-2593	10	29	
421	Nitrogen-carbon layer coated nickel nanoparticles for efficient electrocatalytic reduction of carbon dioxide. <i>Nano Research</i> , 2019 , 12, 1167-1172	10	23	
420	An electrocatalytic route for transformation of biomass-derived furfural into 5-hydroxy-2(5)-furanone. <i>Chemical Science</i> , 2019 , 10, 4692-4698	9.4	18	
419	Aqueous CO2 Reduction with High Efficiency Using £Co(OH)2-Supported Atomic Ir Electrocatalysts. <i>Angewandte Chemie</i> , 2019 , 131, 4717-4721	3.6	12	
418	Cu Ni alloy nanoparticles embedded in a nitrogen-carbon network for efficient conversion of carbon dioxide. <i>Chemical Science</i> , 2019 , 10, 4491-4496	9.4	21	
417	ECyclodextrin/Quaternary Ammonium Salt as an Efficient Catalyst System for Chemical Fixation of COII Journal of Nanoscience and Nanotechnology, 2019 , 19, 3263-3268	1.3	7	

416	Aqueous CO Reduction with High Efficiency Using \mathbb{C} o(OH) -Supported Atomic Ir Electrocatalysts. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4669-4673	16.4	65
415	Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. <i>Nature Communications</i> , 2019 , 10, 677	17.4	136
414	Ambient Reductive Amination of Levulinic Acid to Pyrrolidones over Pt Nanocatalysts on Porous TiO Nanosheets. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4002-4009	16.4	62
413	Hydrogenolysis of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran under Mild Conditions without Any Additive. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 5711-5716	8.3	15
412	Bipyridyl-Containing Cadmium-Organic Frameworks for Efficient Photocatalytic Oxidation of Benzylamine. <i>ACS Applied Materials & Acs Applied & Ac</i>	9.5	23
411	Ru/hydroxyapatite as a dual-functional catalyst for efficient transfer hydrogenolytic cleavage of aromatic ether bonds without additional bases. <i>Green Chemistry</i> , 2019 , 21, 5073-5079	10	29
410	Ionic liquids produce heteroatom-doped Pt/TiO2 nanocrystals for efficient photocatalytic hydrogen production. <i>Nano Research</i> , 2019 , 12, 1967-1972	10	18
409	Ru-Catalyzed methanol homologation with CO2 and H2 in an ionic liquid. <i>Green Chemistry</i> , 2019 , 21, 41	52 415	8 19
408	Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. <i>Nature Communications</i> , 2019 , 10, 2980	17.4	144
407	Nitrogen Dioxide Catalyzed Aerobic Oxidative Cleavage of C(OH)-C Bonds of Secondary Alcohols to Produce Acids. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 17393-17398	16.4	30
406	Nitrogen Dioxide Catalyzed Aerobic Oxidative Cleavage of C(OH) © Bonds of Secondary Alcohols to Produce Acids. <i>Angewandte Chemie</i> , 2019 , 131, 17554-17559	3.6	14
405	Low-Temperature Reverse Water-Gas Shift Process and Transformation of Renewable Carbon Resources to Value-Added Chemicals. <i>ChemSusChem</i> , 2019 , 12, 5149-5156	8.3	10
404	Selective production of diethyl maleate from lignin. <i>Green Energy and Environment</i> , 2019 , 4, 343-344	5.7	5
403	Stepwise degradation of hydroxyl compounds to aldehydes via successive C-C bond cleavage. <i>Chemical Communications</i> , 2019 , 55, 925-928	5.8	14
402	Supercritical Carbon Dioxide (CO2) as Green Solvent 2019 , 173-197		1
401	Selective catalytic transformation of lignin with guaiacol as the only liquid product. <i>Chemical Science</i> , 2019 , 11, 1347-1352	9.4	27
400	Transformation of CO2 into <code>Alkylidene</code> Cyclic Carbonates at Room Temperature Cocatalyzed by CuI and Ionic Liquid with Biomass-Derived Levulinate Anion. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 5614-5619	8.3	24
399	Aerobic selective oxidation of methylaromatics to benzoic acids over Co@N/Co-CNTs with high loading CoN4 species. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 27212-27216	13	11

398	Self-supported hydrogenolysis of aromatic ethers to arenes. Science Advances, 2019, 5, eaax6839	14.3	20
397	Large Scale Synthesis of Transition Metal Single Atom Catalysts by a Universal Ligand Mediated Method. <i>Chemical Research in Chinese Universities</i> , 2019 , 35, 951-952	2.2	O
396	Integration of mesopores and crystal defects in metal-organic frameworks via templated electrosynthesis. <i>Nature Communications</i> , 2019 , 10, 4466	17.4	45
395	Synthesis of higher carboxylic acids from ethers, CO and H. <i>Nature Communications</i> , 2019 , 10, 5395	17.4	18
394	Synthesis of ethanol from aryl methyl ether/lignin, CO and H. <i>Chemical Science</i> , 2019 , 10, 10640-10646	9.4	10
393	Eosin Y-Functionalized Conjugated Organic Polymers for Visible-Light-Driven CO Reduction with H O to CO with High Efficiency. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 632-636	16.4	96
392	Ethylenediamine promoted the hydrogenative coupling of nitroarenes over Ni/C catalyst. <i>Chinese Chemical Letters</i> , 2019 , 30, 203-206	8.1	5
391	Selectively transform lignin into value-added chemicals. <i>Chinese Chemical Letters</i> , 2019 , 30, 15-24	8.1	57
390	MIL-125-NH@TiO Core-Shell Particles Produced by a Post-Solvothermal Route for High-Performance Photocatalytic H Production. <i>ACS Applied Materials & Discourse Applied & Discourse Applied & Discourse Applied & Discour</i>	8-9:ह42	3 ⁹¹
389	Mo B i C d Ternary Metal Chalcogenides: Highly Efficient Photocatalyst for CO2 Reduction to Formic Acid Under Visible Light. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 5754-5759	8.3	42
388	Tin(IV) Sulfide Greatly Improves the Catalytic Performance of UiO-66 for Carbon Dioxide Cycloaddition. <i>ChemCatChem</i> , 2018 , 10, 2945-2948	5.2	8
387	Visible-Light-Driven Photoreduction of CO2 to CH4 over N,O,P-Containing Covalent Organic Polymer Submicrospheres. <i>ACS Catalysis</i> , 2018 , 8, 4576-4581	13.1	71
386	Driving dimethyl carbonate synthesis from CO and methanol and production of acetylene simultaneously using CaC. <i>Chemical Communications</i> , 2018 , 54, 4410-4412	5.8	20
385	Efficient and Mild Transfer Hydrogenolytic Cleavage of Aromatic Ether Bonds in Lignin-Derived Compounds over Ru/C. ACS Sustainable Chemistry and Engineering, 2018, 6, 2872-2877	8.3	63
384	MoP Nanoparticles Supported on Indium-Doped Porous Carbon: Outstanding Catalysts for Highly Efficient CO2 Electroreduction. <i>Angewandte Chemie</i> , 2018 , 130, 2451-2455	3.6	37
383	MoP Nanoparticles Supported on Indium-Doped Porous Carbon: Outstanding Catalysts for Highly Efficient CO Electroreduction. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2427-2431	16.4	142
382	Solvent Impedes CO Cycloaddition on Metal-Organic Frameworks. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 386-389	4.5	12
381	Selective hydrogenation of unsaturated aldehydes over Pt nanoparticles promoted by the cooperation of steric and electronic effects. <i>Chemical Communications</i> , 2018 , 54, 908-911	5.8	38

380	Base-Free Aerobic Oxidation of Alcohols over Copper-Based Complex under Ambient Condition. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 2362-2369	8.3	18
379	Highly selective and efficient reduction of CO to CO on cadmium electrodes derived from cadmium hydroxide. <i>Chemical Communications</i> , 2018 , 54, 5450-5453	5.8	10
378	The 6th International IUPAC Conference on Green Chemistry 48 September 2016 LiVenezia (Italy). <i>Pure and Applied Chemistry</i> , 2018 , 90, 235-237	2.1	
377	One-step synthesis of ultrathin £Co(OH) nanomeshes and their high electrocatalytic activity toward the oxygen evolution reaction. <i>Chemical Communications</i> , 2018 , 54, 4045-4048	5.8	52
376	Highly efficient electrochemical reduction of CO2 into formic acid over lead dioxide in an ionic liquidatholyte mixture. <i>Green Chemistry</i> , 2018 , 20, 1765-1769	10	39
375	Chirality Inversion of Assemblies of Bio-based Surfactant Triggered by Metal Ions. <i>Chemical Research in Chinese Universities</i> , 2018 , 34, 155-157	2.2	1
374	Microwave assisted synthesis of glycerol carbonate from glycerol and urea. <i>Pure and Applied Chemistry</i> , 2018 , 90, 1-6	2.1	10
373	Synthesis of ethanol via a reaction of dimethyl ether with CO2 and H2. <i>Green Chemistry</i> , 2018 , 20, 206-2	1 <u>3</u> 60	25
372	Porous, Naturally Derived Hafnium Phytate for the Highly Chemoselective Transfer Hydrogenation of Aldehydes with Other Reducible Moieties. <i>ChemCatChem</i> , 2018 , 10, 725-730	5.2	5
371	Nanoporous Cu/Ni oxide composites: efficient catalysts for electrochemical reduction of CO2 in aqueous electrolytes. <i>Green Chemistry</i> , 2018 , 20, 3705-3710	10	22
370	Insights into Carbon Dioxide Electroreduction in Ionic Liquids: Carbon Dioxide Activation and Selectivity Tailored by Ionic Microhabitat. <i>ChemSusChem</i> , 2018 , 11, 3191-3197	8.3	23
369	Highly Efficient Electroreduction of CO to Methanol on Palladium-Copper Bimetallic Aerogels. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 14149-14153	16.4	151
368	Carbon dioxide droplets stabilized by g-C3N4. <i>Green Chemistry</i> , 2018 , 20, 4206-4209	10	6
367	Renewable and Biocompatible Lecithin as an Efficient Organocatalyst for Reductive Conversion of CO2 with Amines to Formamides and Methylamines. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 11228-11234	8.3	23
366	Room-Temperature Synthesis of Covalent Organic Framework (COF-LZU1) Nanobars in CO /Water Solvent. <i>ChemSusChem</i> , 2018 , 11, 3576-3580	8.3	21
365	A route to support Pt sub-nanoparticles on TiO2 and catalytic hydrogenation of quinoline to 1,2,3,4-tetrahydroquinoline at room temperature. <i>Catalysis Science and Technology</i> , 2018 , 8, 4314-4317	5.5	13
364	Dual-ionic liquid system: an efficient catalyst for chemical fixation of CO2 to cyclic carbonates under mild conditions. <i>Green Chemistry</i> , 2018 , 20, 2990-2994	10	73
363	Green Chemistry. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018 , 34, 837-837	3.8	3

362	synthesis of sub-nanometer metal particles on hierarchically porous metal-organic frameworks interfacial control for highly efficient catalysis. <i>Chemical Science</i> , 2018 , 9, 1339-1343	9.4	23	
361	Selective electroreduction of carbon dioxide to formic acid on electrodeposited SnO2@N-doped porous carbon catalysts. <i>Science China Chemistry</i> , 2018 , 61, 228-235	7.9	23	
360	Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO to CO. <i>Chemical Science</i> , 2018 , 9, 483-487	9.4	73	
359	Ultrathin and Porous Carbon Nanosheets Supporting Bimetallic Nanoparticles for High-Performance Electrocatalysis. <i>ChemCatChem</i> , 2018 , 10, 1241-1247	5.2	3	
358	Design of naturally derived lead phytate as an electrocatalyst for highly efficient CO2 reduction to formic acid. <i>Green Chemistry</i> , 2018 , 20, 4602-4606	10	10	
357	Pd nanoparticles/polyoxometalatelbnic liquid composites on SiO2 as multifunctional catalysts for efficient production of ketones from diaryl ethers. <i>Green Chemistry</i> , 2018 , 20, 4865-4869	10	10	
356	Basic ionic liquids promoted chemical transformation of CO2 to organic carbonates. <i>Science China Chemistry</i> , 2018 , 61, 1486-1493	7.9	24	
355	Salt-mediated synthesis of bimetallic networks with structural defects and their enhanced catalytic performances. <i>Chemical Communications</i> , 2018 , 54, 12065-12068	5.8	3	
354	Preparation of Copper Phosphate from Naturally Occurring Phytic Acid as an Advanced Catalyst for Oxidation of Aromatic Benzyl Compounds. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 13670-1	3 <mark>87</mark> 5	10	
353	Transformation of alcohols to esters promoted by hydrogen bonds using oxygen as the oxidant under metal-free conditions. <i>Science Advances</i> , 2018 , 4, eaas9319	14.3	40	
352	Highly effective photoreduction of CO to CO promoted by integration of CdS with molecular redox catalysts through metal-organic frameworks. <i>Chemical Science</i> , 2018 , 9, 8890-8894	9.4	66	
351	Imidazolate ionic liquids for high-capacity capture and reliable storage of iodine. <i>Communications Chemistry</i> , 2018 , 1,	6.3	8	
350	Highly Efficient Electroreduction of CO2 to Methanol on Palladium Copper Bimetallic Aerogels. <i>Angewandte Chemie</i> , 2018 , 130, 14345-14349	3.6	29	
349	Efficient electroreduction of CO2 to C2 products over B-doped oxide-derived copper. <i>Green Chemistry</i> , 2018 , 20, 4579-4583	10	39	
348	Naturally occurring gallic acid derived multifunctional porous polymers for highly efficient CO2 conversion and I2 capture. <i>Green Chemistry</i> , 2018 , 20, 4655-4661	10	26	
347	A new route to synthesize aryl acetates from carbonylation of aryl methyl ethers. <i>Science Advances</i> , 2018 , 4, eaaq0266	14.3	15	
346	Catalysis of photooxidation reactions through transformation between Cu and Cu in TiO-Cu-MOF composites. <i>Chemical Communications</i> , 2018 , 54, 5984-5987	5.8	28	
345	Photocatalytic CO Transformation to CH by Ag/Pd Bimetals Supported on N-Doped TiO Nanosheet. <i>ACS Applied Materials & Doped TiO Nanosheet</i> . 4CS Applied Materials & Doped TiO Nanosheet.	9.5	67	

344	Switching chirality in the assemblies of bio-based amphiphiles solely by varying their alkyl chain length. <i>Chemical Communications</i> , 2017 , 53, 2162-2165	5.8	8
343	Synthesis of Asymmetrical Organic Carbonates using CO as a Feedstock in AgCl/Ionic Liquid System at Ambient Conditions. <i>ChemSusChem</i> , 2017 , 10, 1292-1297	8.3	27
342	Synthesis of ketones from biomass-derived feedstock. <i>Nature Communications</i> , 2017 , 8, 14190	17.4	75
341	Design of a Cu(I)/C-doped boron nitride electrocatalyst for efficient conversion of CO2 into acetic acid. <i>Green Chemistry</i> , 2017 , 19, 2086-2091	10	60
340	N-methylation of quinolines with CO2 and H2 catalyzed by Ru-triphos complexes. <i>Science China Chemistry</i> , 2017 , 60, 927-933	7.9	15
339	CO/Water Emulsions Stabilized by Partially Reduced Graphene Oxide. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 17613-17619	9.5	8
338	Efficient Generation of Lactic Acid from Glycerol over a Ru-Zn-Cu /Hydroxyapatite Catalyst. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 1598-1604	4.5	10
337	Heterogeneous Cobalt-Catalyzed Direct N-Formylation of Isoquinolines with CO2 and H2. <i>ChemCatChem</i> , 2017 , 9, 1947-1952	5.2	15
336	Synthesis of formamides containing unsaturated groups by N-formylation of amines using CO2 with H2. <i>Green Chemistry</i> , 2017 , 19, 196-201	10	57
335	Facile Synthesis of Ethyl-4-ethoxy Pentanoate as a Novel Biofuel Additive Derived from EValerolactone. ACS Sustainable Chemistry and Engineering, 2017, 5, 6645-6653	8.3	6
334	ZnI2/NEt3-Catalyzed Cycloaddition of CO2 with Propargylic Alcohols: Computational Study on Mechanism. <i>ChemCatChem</i> , 2017 , 9, 4090-4097	5.2	9
333	Highly dispersible silver nanowires via a diblock copolymer approach for potential application in transparent conductive composites. <i>New Journal of Chemistry</i> , 2017 , 41, 6349-6358	3.6	O
332	,-Dimethylation of nitrobenzenes with CO and water by electrocatalysis. <i>Chemical Science</i> , 2017 , 8, 5669)- <u>5.6</u> 74	11
331	Selective hydration of asymmetric internal aryl alkynes without directing groups to Haryl ketones over Cu-based catalyst. <i>New Journal of Chemistry</i> , 2017 , 41, 6290-6295	3.6	10
330	Efficient synthesis of acetic acid via Rh catalyzed methanol hydrocarboxylation with CO2 and H2 under milder conditions. <i>Green Chemistry</i> , 2017 , 19, 3558-3565	10	30
329	Direct Synthesis of Ultrasmall Ruthenium Nanoparticles on Porous Supports Using Natural Sources for Highly Efficient and Selective Furfural Hydrogenation. <i>ChemCatChem</i> , 2017 , 9, 2448-2452	5.2	18
328	The highly selective aerobic oxidation of cyclohexane to cyclohexanone and cyclohexanol over V2O5@TiO2 under simulated solar light irradiation. <i>Green Chemistry</i> , 2017 , 19, 311-318	10	63
327	Highly selective photocatalytic oxidation of biomass-derived chemicals to carboxyl compounds over Au/TiO2. <i>Green Chemistry</i> , 2017 , 19, 1075-1081	10	64

326	Converting Metal-Organic Framework Particles from Hydrophilic to Hydrophobic by an Interfacial Assembling Route. <i>Langmuir</i> , 2017 , 33, 12427-12433	4	26
325	Fundamentals and Challenges of Electrochemical CO2 Reduction Using Two-Dimensional Materials. <i>CheM</i> , 2017 , 3, 560-587	16.2	513
324	Selective Utilization of the Methoxy Group in Lignin to Produce Acetic Acid. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14868-14872	16.4	53
323	Pickering emulsions stabilized by a metal-organic framework (MOF) and graphene oxide (GO) for producing MOF/GO composites. <i>Soft Matter</i> , 2017 , 13, 7365-7370	3.6	30
322	Selective Utilization of the Methoxy Group in Lignin to Produce Acetic Acid. <i>Angewandte Chemie</i> , 2017 , 129, 15064-15068	3.6	10
321	Ionic liquid [OMIm][OAc] directly inducing oxidation cleavage of the EO-4 bond of lignin model compounds. <i>Chemical Communications</i> , 2017 , 53, 8850-8853	5.8	43
320	Synthesis of Hierarchical Porous Metals Using Ionic-Liquid-Based Media as Solvent and Template. <i>Angewandte Chemie</i> , 2017 , 129, 12857-12860	3.6	
319	Synthesis of Hierarchical Porous Metals Using Ionic-Liquid-Based Media as Solvent and Template. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 12683-12686	16.4	23
318	Synthesis of ethanol from paraformaldehyde, CO2 and H2. <i>Green Chemistry</i> , 2017 , 19, 4396-4401	10	17
317	Ionic liquid accelerates the crystallization of Zr-based metal-organic frameworks. <i>Nature Communications</i> , 2017 , 8, 175	17.4	72
316	Interfacial assembly and hydrolysis for synthesizing a TiO/metal-organic framework composite. <i>Soft Matter</i> , 2017 , 13, 9174-9178	3.6	7
315	Synthesis of nitrogen and sulfur co-doped hierarchical porous carbons and metal-free oxidative coupling of silanes with alcohols. <i>Chemical Communications</i> , 2017 , 53, 13019-13022	5.8	8
314	Titelbild: Selective Utilization of the Methoxy Group in Lignin to Produce Acetic Acid (Angew. Chem. 47/2017). <i>Angewandte Chemie</i> , 2017 , 129, 14967-14967	3.6	
313	Visible-light-driven conversion of CO2 from air to CO using an ionic liquid and a conjugated polymer. <i>Green Chemistry</i> , 2017 , 19, 5777-5781	10	42
312	Metal-Organic Framework-Stabilized CO/Water Interfacial Route for Photocatalytic CO Conversion. <i>ACS Applied Materials & District Mater</i>	9.5	23
311	Natural Product Glycine Betaine as an Efficient Catalyst for Transformation of CO2 with Amines to Synthesize N-Substituted Compounds. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 7086-7092	8.3	60
310	SPATA2 regulates the activation of RIPK1 by modulating linear ubiquitination. <i>Genes and Development</i> , 2017 , 31, 1162-1176	12.6	32
309	Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids. <i>Chemical Reviews</i> , 2017 , 117, 6834-6880	68.1	484

308	Efficient Hydrogenation of CO2 to Methanol over Supported Subnanometer Gold Catalysts at Low Temperature. <i>ChemCatChem</i> , 2017 , 9, 3691-3696	5.2	30
307	Highly selective oxidation of cyclohexene to 2-cyclohexene-1-one in water using molecular oxygen over Fellog-C3N4. <i>Catalysis Science and Technology</i> , 2016 , 6, 193-200	5.5	56
306	Poly(ethylene glycol) based bis-diol as a functional medium for highly efficient conversion of urea and methanol to dimethyl carbonate. <i>Green Chemistry</i> , 2016 , 18, 798-801	10	8
305	Cooperative catalysis of Pt/C and acid resin for the production of 2,5-dimethyltetrahydrofuran from biomass derived 2,5-hexanedione under mild conditions. <i>Green Chemistry</i> , 2016 , 18, 220-225	10	21
304	Using the hydrogen and oxygen in water directly for hydrogenation reactions and glucose oxidation by photocatalysis. <i>Chemical Science</i> , 2016 , 7, 463-468	9.4	30
303	Metal D rganic Framework for Emulsifying Carbon Dioxide and Water. <i>Angewandte Chemie</i> , 2016 , 128, 11544-11548	3.6	3
302	Metal-Organic Framework for Emulsifying Carbon Dioxide and Water. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11372-6	16.4	32
301	Formation of large nanodomains in liquid solutions near the phase boundary. <i>Chemical Communications</i> , 2016 , 52, 14286-14289	5.8	3
300	Low temperature hydrogenation of <code>angelica</code> lactone on silica supported PdNiO catalysts with synergistic effect. <i>RSC Advances</i> , 2016 , 6, 65377-65382	3.7	8
299	Porous Hafnium Phosphonate: Novel Heterogeneous Catalyst for Conversion of Levulinic Acid and Esters into Evalerolactone. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 6231-6236	8.3	54
298	Efficient hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over a cobalt and copper bimetallic catalyst on N-graphene-modified Al2O3. <i>Green Chemistry</i> , 2016 , 18, 6222-6228	10	75
297	Cellular graphene aerogel combines ultralow weight and high mechanical strength: A highly efficient reactor for catalytic hydrogenation. <i>Scientific Reports</i> , 2016 , 6, 25830	4.9	40
296	High-internal-phase emulsions stabilized by metal-organic frameworks and derivation of ultralight metal-organic aerogels. <i>Scientific Reports</i> , 2016 , 6, 21401	4.9	59
295	Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2. <i>Nature Communications</i> , 2016 , 7, 11481	17.4	98
294	Biomass-derived Evalerolactone as an efficient solvent and catalyst for the transformation of CO2 to formamides. <i>Green Chemistry</i> , 2016 , 18, 3956-3961	10	77
293	Water-Enhanced Synthesis of Higher Alcohols from CO2 Hydrogenation over a Pt/Co3O4 Catalyst under Milder Conditions. <i>Angewandte Chemie</i> , 2016 , 128, 747-751	3.6	33
292	Water-Enhanced Synthesis of Higher Alcohols from CO2 Hydrogenation over a Pt/Co3O4 Catalyst under Milder Conditions. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 737-41	16.4	145
291	An Efficient and General Method for Formylation of Aryl Bromides with CO2 and Poly(methylhydrosiloxane). <i>Chemistry - A European Journal</i> , 2016 , 22, 1097-102	4.8	37

(2016-2016)

290	Copper-catalyzed N-formylation of amines with CO2 under ambient conditions. <i>RSC Advances</i> , 2016 , 6, 32370-32373	3.7	61
289	Very highly efficient reduction of CO to CH using metal-free N-doped carbon electrodes. <i>Chemical Science</i> , 2016 , 7, 2883-2887	9.4	152
288	A Pd-Cu2O nanocomposite as an effective synergistic catalyst for selective semi-hydrogenation of the terminal alkynes only. <i>Chemical Communications</i> , 2016 , 52, 3627-30	5.8	34
287	Synthesis of hierarchical porous FeOOH catalysts in ionic liquid/water/CH2Cl2 ionogels. <i>Chemical Communications</i> , 2016 , 52, 4687-90	5.8	6
286	Metalated Mesoporous Poly(triphenylphosphine) with Azo Functionality: Efficient Catalysts for CO2 Conversion. <i>ACS Catalysis</i> , 2016 , 6, 1268-1273	13.1	89
285	Metal-Oxide-Catalyzed Efficient Conversion of Cellulose to Oxalic Acid in Alkaline Solution under Low Oxygen Pressure. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 305-311	8.3	29
284	Zinc(II)-catalyzed reactions of carbon dioxide and propargylic alcohols to carbonates at room temperature. <i>Green Chemistry</i> , 2016 , 18, 382-385	10	118
283	Synthesis of hierarchical mesoporous Prussian blue analogues in ionic liquid/water/MgCl2 and application in electrochemical reduction of CO2. <i>Green Chemistry</i> , 2016 , 18, 1869-1873	10	19
282	Highly efficient electrochemical reduction of CO to CH in an ionic liquid using a metal-organic framework cathode. <i>Chemical Science</i> , 2016 , 7, 266-273	9.4	177
281	Efficient Reduction of CO2 into Formic Acid on a Lead or Tin Electrode using an Ionic Liquid Catholyte Mixture. <i>Angewandte Chemie</i> , 2016 , 128, 9158-9162	3.6	49
280	Molybdenum-Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 6771-5	16.4	176
279	Preparation of Ru/Graphene using Glucose as Carbon Source and Hydrogenation of Levulinic Acid to Evalerolactone. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 2792-2796	4.5	28
278	Synthesis of Supported Ultrafine Non-noble Subnanometer-Scale Metal Particles Derived from Metal-Organic Frameworks as Highly Efficient Heterogeneous Catalysts. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 1080-4	16.4	54
277	Synthesis of Functional Nanomaterials in Ionic Liquids. <i>Advanced Materials</i> , 2016 , 28, 1011-30	24	102
276	Efficient Reduction of CO2 into Formic Acid on a Lead or Tin Electrode using an Ionic Liquid Catholyte Mixture. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 9012-6	16.4	149
275	Assembling Metal-Organic Frameworks in Ionic Liquids and Supercritical CO. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 2610-2619	4.5	37
274	Synthesis of Supported Ultrafine Non-noble Subnanometer-Scale Metal Particles Derived from Metal Drganic Frameworks as Highly Efficient Heterogeneous Catalysts. <i>Angewandte Chemie</i> , 2016 , 128, 1092-1096	3.6	15
273	Molybdenum B ismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol. <i>Angewandte Chemie</i> , 2016 , 128, 6883-6887	3.6	42

272	N-vinyl pyrrolidone promoted aqueous-phase dehydrogenation of formic acid over PVP-stabilized Ru nanoclusters. <i>Science China Chemistry</i> , 2016 , 59, 1342-1347	7.9	7
271	Electrochemical reduction of CO2 to CO using graphene oxide/carbon nanotube electrode in ionic liquid/acetonitrile system. <i>Science China Chemistry</i> , 2016 , 59, 551-556	7.9	39
270	Bromide promoted hydrogenation of CO to higher alcohols using Ru-Co homogeneous catalyst. <i>Chemical Science</i> , 2016 , 7, 5200-5205	9.4	44
269	Simultaneous and selective transformation of glucose to arabinose and nitrosobenzene to azoxybenzene driven by visible-light. <i>Green Chemistry</i> , 2016 , 18, 3852-3857	10	21
268	Water-in-Supercritical CO Microemulsion Stabilized by a Metal Complex. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 13533-13537	16.4	12
267	Selective hydrogenation of furfural on Ru/Al-MIL-53: a comparative study on the effect of aromatic and aliphatic organic linkers. <i>RSC Advances</i> , 2016 , 6, 92299-92304	3.7	22
266	Water-in-Supercritical CO2 Microemulsion Stabilized by a Metal Complex. <i>Angewandte Chemie</i> , 2016 , 128, 13731-13735	3.6	5
265	Controllable Self-Assembly of Amphiphilic Dendrimers on a Silica Surface: The Effect of Molecular Topological Structure and Salinity. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 10990-10999	3.4	4
264	High internal ionic liquid phase emulsion stabilized by metal-organic frameworks. <i>Soft Matter</i> , 2016 , 12, 8841-8846	3.6	25
263	Free radical reaction promoted by ionic liquid: a route for metal-free oxidation depolymerization of lignin model compound and lignin. <i>Chemical Communications</i> , 2015 , 51, 4028-31	5.8	56
262	Mesoporous inorganic salts with crystal defects: unusual catalysts and catalyst supports. <i>Chemical Science</i> , 2015 , 6, 1668-1675	9.4	23
261	Enhancing the selective hydrogenation of benzene to cyclohexene over Ru/TiO2 catalyst in the presence of a very small amount of ZnO. <i>Science China Chemistry</i> , 2015 , 58, 93-100	7.9	12
260	Transformation of atmospheric CO2 catalyzed by protic ionic liquids: efficient synthesis of 2-oxazolidinones. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5399-403	16.4	190
259	Imidazolium-Based Ionic Liquids Catalyzed Formylation of Amines Using Carbon Dioxide and Phenylsilane at Room Temperature. <i>ACS Catalysis</i> , 2015 , 5, 4989-4993	13.1	141
258	Room-temperature synthesis of mesoporous CuO and its catalytic activity for cyclohexene oxidation. <i>RSC Advances</i> , 2015 , 5, 67168-67174	3.7	20
257	Free-radical conversion of a lignin model compound catalyzed by Pd/C. <i>Green Chemistry</i> , 2015 , 17, 4452	-4458	18
256	The ionic liquid microphase enhances the catalytic activity of Pd nanoparticles supported by a metal B rganic framework. <i>Green Chemistry</i> , 2015 , 17, 4178-4182	10	40
255	Green chemistry: a tool for the sustainable development of the chemical industry. <i>National Science Review</i> , 2015 , 2, 255-256	10.8	43

(2015-2015)

254	Highly selective hydrogenation of CO into C alcohols by homogeneous catalysis. <i>Chemical Science</i> , 2015 , 6, 5685-5689	9.4	60
253	Light-driven integration of the reduction of nitrobenzene to aniline and the transformation of glycerol into valuable chemicals in water. <i>RSC Advances</i> , 2015 , 5, 36347-36352	3.7	32
252	Solvent effects on geometrical structures and electronic properties of metal Au, Ag, and Cu nanoparticles of different sizes. <i>Journal of Colloid and Interface Science</i> , 2015 , 449, 488-93	9.3	17
251	Solvent determines the formation and properties of metalorganic frameworks. <i>RSC Advances</i> , 2015 , 5, 37691-37696	3.7	56
250	Ionic Liquid-Catalyzed CB Bond Construction using CO2 as a C1 Building Block under Mild Conditions: A Metal-Free Route to Synthesis of Benzothiazoles. <i>ACS Catalysis</i> , 2015 , 5, 6648-6652	13.1	82
249	A new porous Zr-containing catalyst with a phenate group: an efficient catalyst for the catalytic transfer hydrogenation of ethyl levulinate to Evalerolactone. <i>Green Chemistry</i> , 2015 , 17, 1626-1632	10	131
248	A strategy to overcome the thermodynamic limitation in CO2 conversion using ionic liquids and urea. <i>Green Chemistry</i> , 2015 , 17, 1633-1639	10	19
247	A route to convert CO2: synthesis of 3,4,5-trisubstituted oxazolones. <i>Green Chemistry</i> , 2015 , 17, 1219-1	225	46
246	Highly efficient hydrogenation of carbon dioxide to methyl formate over supported gold catalysts. <i>Green Chemistry</i> , 2015 , 17, 1467-1472	10	35
245	High-efficiency exfoliation of layered materials into 2D nanosheets in switchable CO2/Surfactant/H2O system. <i>Scientific Reports</i> , 2015 , 5, 16764	4.9	46
244	Transformation of Atmospheric CO2 Catalyzed by Protic Ionic Liquids: Efficient Synthesis of 2-Oxazolidinones. <i>Angewandte Chemie</i> , 2015 , 127, 5489-5493	3.6	50
243	VxOy Supported on Hydrophobic Poly(Ionic Liquid)s as an Efficient Catalyst for Direct Hydroxylation of Benzene to Phenol. <i>ChemCatChem</i> , 2015 , 7, 3526-3532	5.2	15
242	Porous Zirconium-Phytic Acid Hybrid: a Highly Efficient Catalyst for Meerwein-Ponndorf-Verley Reductions. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9399-403	16.4	169
241	Synthesizing Ag Nanoparticles of Small Size on a Hierarchical Porosity Support for the Carboxylative Cyclization of Propargyl Alcohols with CO2 under Ambient Conditions. <i>Chemistry - A European Journal</i> , 2015 , 21, 15924-8	4.8	58
240	Efficient Transformation of Anisole into Methylated Phenols over High-Silica HY Zeolites under Mild Conditions. <i>ChemCatChem</i> , 2015 , 7, 2831-2835	5.2	16
239	Cu and Boron Doped Carbon Nitride for Highly Selective Oxidation of Toluene to Benzaldehyde. <i>Molecules</i> , 2015 , 20, 12686-97	4.8	26
238	Synthesis of higher alcohols from CO2 hydrogenation over a PtRu/Fe2O3 catalyst under supercritical condition. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2015 , 373,	3	11
237	Self-Aggregation of Amphiphilic Dendrimer in Aqueous Solution: The Effect of Headgroup and Hydrocarbon Chain Length. <i>Langmuir</i> , 2015 , 31, 7919-25	4	12

236	Task-specific ionic liquid and CO-cocatalysed efficient hydration of propargylic alcohols to ⊞ydroxy ketones. <i>Chemical Science</i> , 2015 , 6, 2297-2301	9.4	70
235	One-pot conversion of carbohydrates into gamma-valerolactone catalyzed by highly cross-linked ionic liquid polymer and Co/TiO2. <i>RSC Advances</i> , 2015 , 5, 15267-15273	3.7	42
234	Catalysis in Supercritical Fluids 2014 , 469-488		2
233	Coupling Reactions with Supported Ionic Liquid Catalysts 2014 , 233-250		O
232	Acceleration of Suzuki coupling reactions by abundant and non-toxic salt particles. <i>Green Chemistry</i> , 2014 , 16, 1198-1201	10	25
231	Efficient synthesis of quinazoline-2,4(1H,3H)-diones from CO2 using ionic liquids as a dual solventBatalyst at atmospheric pressure. <i>Green Chemistry</i> , 2014 , 16, 221-225	10	103
230	Amphiphile self-assemblies in supercritical CO2 and ionic liquids. <i>Soft Matter</i> , 2014 , 10, 5861-8	3.6	23
229	Choline hydroxide promoted chemical fixation of CO2 to quinazoline-2,4(1H,3H)-diones in water. <i>RSC Advances</i> , 2014 , 4, 50993-50997	3.7	30
228	Highly mesoporous metal-organic framework assembled in a switchable solvent. <i>Nature Communications</i> , 2014 , 5, 4465	17.4	137
227	Aggregation Behaviors of Novel Amphiphilic Dendrimers at Solid-Liquid Interface. <i>Journal of Dispersion Science and Technology</i> , 2014 , 35, 456-462	1.5	2
226	Large-scale production of high-quality graphene using glucose and ferric chloride. <i>Chemical Science</i> , 2014 , 5, 4656-4660	9.4	84
225	Cobalt catalysts: very efficient for hydrogenation of biomass-derived ethyl levulinate to gamma-valerolactone under mild conditions. <i>Green Chemistry</i> , 2014 , 16, 3870-3875	10	110
224	Very efficient conversion of glucose to 5-hydroxymethylfurfural in DBU-based ionic liquids with benzenesulfonate anion. <i>Green Chemistry</i> , 2014 , 16, 3935-3941	10	56
223	One-step synthesis of highly efficient nanocatalysts on the supports with hierarchical pores using porous ionic liquid-water gel. <i>Journal of the American Chemical Society</i> , 2014 , 136, 3768-71	16.4	80
222	Preparation of catalytic materials using ionic liquids as the media and functional components. <i>Advanced Materials</i> , 2014 , 26, 6810-27	24	80
221	One-pot sequential oxidation and aldol-condensation reactions of veratryl alcohol catalyzed by the Ru@ZIF-8 + CuO/basic ionic liquid system. <i>Green Chemistry</i> , 2014 , 16, 600-604	10	43
220	Effect analysis of mineral salt concentrations on nosiheptide production by Streptomyces actuosus Z-10 using response surface methodology. <i>Molecules</i> , 2014 , 19, 15507-20	4.8	9
219	The Hydrogenation of Aromatic Compounds under Mild Conditions by Using a Solid Lewis Acid and Supported Palladium Catalyst. <i>ChemCatChem</i> , 2014 , 6, 3323-3327	5.2	17

218	Structures and Thermodynamic Properties of Ionic Liquids. Structure and Bonding, 2014, 107-139	0.9	8
217	Hollow metal-organic framework polyhedra synthesized by a CO2-ionic liquid interfacial templating route. <i>Journal of Colloid and Interface Science</i> , 2014 , 416, 198-204	9.3	41
216	Reversible capture of SO2 through functionalized ionic liquids. <i>ChemSusChem</i> , 2013 , 6, 1191-5	8.3	118
215	Conversion of glucose and cellulose into value-added products in water and ionic liquids. <i>Green Chemistry</i> , 2013 , 15, 2619	10	228
214	Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 9620-33	16.4	580
213	Supramolecular Assemblies of Amphiphilic L-Proline Regulated by Compressed CO2 as a Recyclable Organocatalyst for the Asymmetric Aldol Reaction. <i>Angewandte Chemie</i> , 2013 , 125, 7915-7919	3.6	11
212	Efficient SO2 absorption by renewable choline chlorideglycerol deep eutectic solvents. <i>Green Chemistry</i> , 2013 , 15, 2261	10	173
211	Shape and size controlled synthesis of MOF nanocrystals with the assistance of ionic liquid mircoemulsions. <i>Langmuir</i> , 2013 , 29, 13168-74	4	75
210	Efficient dehydration of carbohydrates to 5-hydroxymethylfurfural in ionic liquids catalyzed by tin(IV) phosphonate and zirconium phosphonate. <i>Science China Chemistry</i> , 2013 , 56, 1578-1585	7.9	9
209	An efficient palladium catalyst on bentonite for SuzukiMiyaura reaction at room temperature. <i>Green Chemistry</i> , 2013 , 15, 3396	10	34
208	Efficient SO2 capture by amine functionalized PEG. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 1812.	3 <i>-3</i> .6	26
207	Efficient conversion of glucose and cellulose to 5-hydroxymethylfurfural in DBU-based ionic liquids. <i>RSC Advances</i> , 2013 , 3, 20085	3.7	18
206	Supercritical or compressed CO2 as a stimulus for tuning surfactant aggregations. <i>Accounts of Chemical Research</i> , 2013 , 46, 425-33	24.3	74
205	Catalytic activity of immobilized Ru nanoparticles in a porous metal-organic framework using supercritical fluid. <i>Chinese Journal of Catalysis</i> , 2013 , 34, 167-175	11.3	20
204	Facile one-pot synthesis of VxOy@C catalysts using sucrose for the direct hydroxylation of benzene to phenol. <i>Green Chemistry</i> , 2013 , 15, 1150	10	55
203	Cycloaddition of CO2 to epoxides catalyzed by imidazolium-based polymeric ionic liquids. <i>Green Chemistry</i> , 2013 , 15, 1584	10	147
202	Efficient synthesis of quinazoline-2,4(1H,3H)-diones from CO2 and 2-aminobenzonitriles in water without any catalyst. <i>Green Chemistry</i> , 2013 , 15, 1485	10	83
201	Effective synthesis of cyclic carbonates from CO2 and epoxides catalyzed by KI/cucurbit[6]uril. <i>Pure and Applied Chemistry</i> , 2013 , 85, 1633-1641	2.1	26

200	The molecular clusters in a supercritical fluid-solid system should be considered as a phase-thermodynamic principle and evidence. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 10654-8	3.6	1
199	Acceleration of disproportionation reactions of aryl alcohols in water medium by CO2. <i>Science China Chemistry</i> , 2013 , 56, 1436-1439	7.9	1
198	Catalytic hydroxylation of benzene to phenol with hydrogen peroxide using catalysts based on molecular sieves. <i>New Journal of Chemistry</i> , 2013 , 37, 1654	3.6	74
197	RuIn supported on hydroxyapatite as an effective catalyst for partial hydrogenation of benzene. <i>Green Chemistry</i> , 2013 , 15, 152-159	10	67
196	Gr	-9812	106
195	Macro- and mesoporous polymers synthesized by a CO2-in-ionic liquid emulsion-templating route. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 1792-5	16.4	32
194	Macro- and Mesoporous Polymers Synthesized by a CO2-in-Ionic Liquid Emulsion-Templating Route. <i>Angewandte Chemie</i> , 2013 , 125, 1836-1839	3.6	7
193	Supercritical Carbon Dioxide (CO2) as Green Solvent 2013 , 297-326		7
192	Formation of multiple water-in-ionic liquid-in-water emulsions. <i>Journal of Colloid and Interface Science</i> , 2012 , 368, 395-9	9.3	20
191	Ru catalyst supported on bentonite for partial hydrogenation of benzene to cyclohexene. <i>Journal of Molecular Catalysis A</i> , 2012 , 355, 174-179		50
190	Nanosized Poly(ethylene glycol) Domains within Reverse Micelles Formed in CO2. <i>Angewandte Chemie</i> , 2012 , 124, 12491-12495	3.6	4
189	Nanosized poly(ethylene glycol) domains within reverse micelles formed in CO2. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 12325-9	16.4	25
188	Acceleration of disproportionation of aromatic alcohols through self-emulsification of reactants in water. <i>ChemSusChem</i> , 2012 , 5, 2469-73	8.3	4
187	Surfactant-directed assembly of mesoporous metal-organic framework nanoplates in ionic liquids. <i>Chemical Communications</i> , 2012 , 48, 8688-90	5.8	104
186	Elimination of the negative effect of nitrogen compounds by CO2Water in the hydrocracking of anthracene. <i>Green Chemistry</i> , 2012 , 14, 1854	10	8
185	Ionic liquid-in-ionic liquid nanoemulsions. <i>Chemical Communications</i> , 2012 , 48, 10562-4	5.8	23
184	High-pressure phase behaviors of CO2+1-propanol+ionic liquid ternary systems. <i>Journal of Supercritical Fluids</i> , 2012 , 69, 108-112	4.2	7
183	The catalytic mechanism of KI and the co-catalytic mechanism of hydroxyl substances for cycloaddition of CO2 with propylene oxide. <i>Green Chemistry</i> , 2012 , 14, 2410	10	130

(2011-2012)

182	Dehydration of Carbohydrates to 5-Hydroxymethylfurfural in Ionic Liquids Catalyzed by Hexachlorotriphosphazene. <i>Chinese Journal of Chemistry</i> , 2012 , 30, 2079-2084	4.9	11
181	Water as an additive to enhance the ring opening of naphthalene. <i>Green Chemistry</i> , 2012 , 14, 1152	10	18
180	Dilational properties of novel amphiphilic dendrimers at water-air and water-heptane interfaces. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 12760-8	3.4	12
179	The physicochemical properties of some imidazolium-based ionic liquids and their binary mixtures. <i>Science China Chemistry</i> , 2012 , 55, 1509-1518	7.9	47
178	High-internal-ionic liquid-phase emulsions. <i>Chemical Communications</i> , 2012 , 48, 994-6	5.8	31
177	Rulld/Bentonite for the Partial Hydrogenation of Benzene: A Catalyst without Additives. <i>ChemCatChem</i> , 2012 , 4, 1836-1843	5.2	15
176	Hydrogenolysis of Glycerol to 1,2-Propanediol over Rullu Bimetals Supported on Different Supports. <i>Clean - Soil, Air, Water</i> , 2012 , 40, 318-324	1.6	29
175	One-pot conversion of CO2 and glycerol to value-added products using propylene oxide as the coupling agent. <i>Green Chemistry</i> , 2012 , 14, 1743	10	82
174	Highly efficient synthesis of cyclic carbonates from CO2 and epoxides catalyzed by KI/lecithin. <i>Catalysis Today</i> , 2012 , 183, 130-135	5.3	73
173	Ru nanoparticles immobilized on metalörganic framework nanorods by supercritical CO2-methanol solution: highly efficient catalyst. <i>Green Chemistry</i> , 2011 , 13, 2078	10	98
172	Pd(II) immobilized on mesoporous silica by N-heterocyclic carbene ionic liquids and catalysis for hydrogenation. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 2062-8	3.6	34
171	Highly efficient synthesis of cyclic carbonates from CO2 and epoxides over cellulose/KI. <i>Chemical Communications</i> , 2011 , 47, 2131-3	5.8	241
170	Highly selective benzene hydrogenation to cyclohexene over supported Ru catalyst without additives. <i>Green Chemistry</i> , 2011 , 13, 1106	10	41
169	Synthesis of unsymmetrical organic carbonates catalyzed by a sulfonic acid-functionalized zirconium phosphonate. <i>Pure and Applied Chemistry</i> , 2011 , 84, 675-684	2.1	5
168	Hydrogenation of methyl laurate to produce lauryl alcohol over Cu/ZnO/Al2O3 with methanol as the solvent and hydrogen source. <i>Pure and Applied Chemistry</i> , 2011 , 84, 779-788	2.1	8
167	Hydrocracking of Anthracene to Ethyl Biphenyl Promoted by Coupling Supercritical Water and Cracking Catalysts. <i>ChemCatChem</i> , 2011 , 3, 1474-1479	5.2	9
166	Synthesis of cyclic carbonates and dimethyl carbonate using CO2 as a building block catalyzed by MOF-5/KI and MOF-5/KI/K2CO3. <i>Frontiers of Chemistry in China: Selected Publications From Chinese Universities</i> , 2011 , 6, 21-30		19
165	Conversions of Cellobiose and Inulin to Deoxyfructosazine in Aqueous Solutions. <i>Clean - Soil, Air, Water</i> , 2011 , 39, 572-576	1.6	12

164	Metal©rganic Framework Nanospheres with Well-Ordered Mesopores Synthesized in an Ionic Liquid/CO2/Surfactant System. <i>Angewandte Chemie</i> , 2011 , 123, 662-665	3.6	45
163	Carbon Dioxide in Ionic Liquid Microemulsions. <i>Angewandte Chemie</i> , 2011 , 123, 10085-10089	3.6	5
162	Metal-organic framework nanospheres with well-ordered mesopores synthesized in an ionic liquid/CO2/surfactant system. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 636-9	16.4	249
161	Carbon dioxide in ionic liquid microemulsions. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 991	1 <u>-1</u> 56.4	36
160	Enhanced stabilization of vesicles formed in mixed cationic and anionic surfactant systems by compressed gases. <i>RSC Advances</i> , 2011 , 1, 776	3.7	7
159	Organotin-oxomolybdate coordination polymer as catalyst for synthesis of unsymmetrical organic carbonates. <i>Green Chemistry</i> , 2011 , 13, 922	10	14
158	Efficient separation of surfactant and organic solvent by CO2. Chemical Communications, 2011, 47, 5816	5 -\$ 8	7
157	Synthesis of Propylene Glycol Methyl Ether Catalyzed by MCM-41. <i>Synthetic Communications</i> , 2011 , 41, 891-897	1.7	8
156	CO2 capture by hydrocarbon surfactant liquids. Chemical Communications, 2011, 47, 1033-5	5.8	41
155	The partial hydrogenation of benzene to cyclohexene over Rullu catalyst supported on ZnO. <i>Journal of Molecular Catalysis A</i> , 2011 , 341, 35-41		39
154	Linear correlation of isothermal densities of fluid mixtures in near-critical region. <i>High Temperature</i> , 2010 , 48, 295-298	0.8	
153	Immobilization of Pd nanoparticles with functional ionic liquid grafted onto cross-linked polymer for solvent-free Heck reaction. <i>Green Chemistry</i> , 2010 , 12, 65-69	10	116
152	Dispersion of graphene sheets in ionic liquid [bmim][PF6] stabilized by an ionic liquid polymer. <i>Chemical Communications</i> , 2010 , 46, 386-8	5.8	157
151	Synthesis of Nanomaterials 2010 , 369		1
150	Seeding Growth of Pd/Au Bimetallic Nanoparticles on Highly Cross-Linked Polymer Microspheres with Ionic Liquid and Solvent-Free Hydrogenation. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 3396-3400) ^{3.8}	58
149	Synthesis of dimethylformamide from CO2, H2 and dimethylamine over Cu/ZnO. <i>Chemical Communications</i> , 2010 , 46, 5770-2	5.8	58
148	The tetramethylguanidine-based ionic liquid-catalyzed synthesis of propylene glycol methyl ether. <i>New Journal of Chemistry</i> , 2010 , 34, 2534	3.6	19
147	Shape controlled synthesis of palladium nanocrystals by combination of oleylamine and alkylammonium alkylcarbamate and their catalytic activity. <i>Chemical Communications</i> , 2010 , 46, 8552-4	5.8	41

146	CO2-responsive TX-100 emulsion for selective synthesis of 1D or 3D gold. <i>Soft Matter</i> , 2010 , 6, 6200	3.6	13
145	Effect of CO2 on conversion of inulin to 5-hydroxymethylfurfural and propylene oxide to 1,2-propanediol in water. <i>Green Chemistry</i> , 2010 , 12, 1215	10	55
144	CO2-controlled reactors: epoxidation in emulsions with droplet size from micron to nanometre scale. <i>Green Chemistry</i> , 2010 , 12, 452	10	11
143	Shape and size controlled synthesis of anatase nanocrystals with the assistance of ionic liquid. <i>Langmuir</i> , 2010 , 26, 5129-34	4	33
142	Bimetallic Au/Pd catalyzed aerobic oxidation of alcohols in the poly(ethylene glycol)/CO2 system. <i>Science China Chemistry</i> , 2010 , 53, 1592-1597	7.9	2
141	Immobilized 1,1,3,3-Tetramethylguanidine Ionic Liquids as the Catalyst for Synthesizing Propylene Glycol Methyl Ether. <i>Catalysis Letters</i> , 2010 , 140, 49-54	2.8	17
140	The effect of supercritical water on the hydroconversion of Tahe Residue. <i>AICHE Journal</i> , 2010 , 56, 323	6 3 322.42	2 16
139	Ionic Liquid Catalytic Systems and Chemical Reactions. <i>Current Organic Chemistry</i> , 2009 , 13, 1278-1299	1.7	34
138	Hydrogenation of CO2 to formic acid promoted by a diamine-functionalized ionic liquid. <i>ChemSusChem</i> , 2009 , 2, 234-8	8.3	124
137	Enlargement of cationic alkyl polyglycoside micelles by ionic liquid. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2009 , 336, 110-114	5.1	3
136	Pd nanoparticles immobilized on sepiolite by ionic liquids: efficient catalysts for hydrogenation of alkenes and Heck reactions. <i>Green Chemistry</i> , 2009 , 11, 96-101	10	83
135	Hydrogenolysis of glycerol catalyzed by Ru-Cu bimetallic catalysts supported on clay with the aid of ionic liquids. <i>Green Chemistry</i> , 2009 , 11, 1000	10	108
134	Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid. <i>Green Chemistry</i> , 2009 , 11, 1746	10	402
133	Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids. <i>Green Chemistry</i> , 2009 , 11, 873	10	169
132	MOF-5/n-Bu4NBr: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions. <i>Green Chemistry</i> , 2009 , 11, 1031	10	380
131	Integrated polymer spherulites growing from one homogeneous nucleation site in supercritical fluid. <i>New Journal of Chemistry</i> , 2009 , 33, 1841	3.6	7
130	Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst. <i>Science</i> , 2009 , 326, 1250-2	33.3	458
129	Enhancing the selectivity of the hydrogenation of naphthalene to tetralin by high temperature water. <i>Green Chemistry</i> , 2009 , 11, 1061	10	29

128	Cross-linked polymer coated Pd nanocatalysts on SiO2 support: very selective and stable catalysts for hydrogenation in supercritical CO2. <i>Green Chemistry</i> , 2009 , 11, 798	10	24
127	The dispersion of carbon nanotubes in water with the aid of very small amounts of ionic liquid. <i>Chemical Communications</i> , 2009 , 1897-9	5.8	61
126	Highly Efficient Nanocatalysts Supported on Hollow Polymer Nanospheres: Synthesis, Characterization, and Applications. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 774-780	3.8	79
125	Solubility of CO2 in a Choline Chloride + Urea Eutectic Mixture. <i>Journal of Chemical & Engineering Data</i> , 2008 , 53, 548-550	2.8	256
124	Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials. <i>Green Chemistry</i> , 2008 , 10, 1280	10	284
123	Synthesis of cyclic carbonates from epoxides and CO2 catalyzed by potassium halide in the presence of Ecyclodextrin. <i>Green Chemistry</i> , 2008 , 10, 1337	10	156
122	A new separation method: combination of CO2 and surfactant aqueous solutions. <i>Green Chemistry</i> , 2008 , 10, 578	10	15
121	Solvent-free synthesis of substituted ureas from CO2 and amines with a functional ionic liquid as the catalyst. <i>Green Chemistry</i> , 2008 , 10, 465	10	152
120	Switching the basicity of ionic liquids by CO2. <i>Green Chemistry</i> , 2008 , 10, 1142	10	85
119	Imidazolium cation mediated synthesis of polystyrenepolyaniline coreEhell structures. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5406		23
118	Aerobic oxidation of benzyl alcohol in supercritical CO2 catalyzed by perruthenate immobilized on polymer supported ionic liquid. <i>Green Chemistry</i> , 2008 , 10, 278	10	43
117	Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters. <i>Green Chemistry</i> , 2008 , 10, 879	10	210
116	Synthesis of icosahedral gold particles by a simple and mild route. <i>Green Chemistry</i> , 2008 , 10, 1094	10	27
115	Solvent-free Heck reaction catalyzed by a recyclable Pd catalyst supported on SBA-15 via an ionic liquid. <i>Green Chemistry</i> , 2008 , 10, 59-66	10	100
114	Hydrogenation of carbon dioxide is promoted by a task-specific ionic liquid. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 1127-9	16.4	244
113	Reversible switching of lamellar liquid crystals into micellar solutions using CO2. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 10119-23	16.4	25
112	Hydrogenation of Carbon Dioxide is Promoted by a Task-Specific Ionic Liquid. <i>Angewandte Chemie</i> , 2008 , 120, 1143-1145	3.6	63
111	Large-scale production of self-assembled SnO2 nanospheres and their application in high-performance chemiluminescence sensors for hydrogen sulfide gas. <i>Journal of Materials Chemistry</i> , 2007 , 17, 1791		71

(2006-2007)

110	Control Synthesis of Silver Nanosheets, Chainlike Sheets, and Microwires via a Simple SolventThermal Method. <i>Crystal Growth and Design</i> , 2007 , 7, 900-904	3.5	60
109	Ionic Liquid-Assisted Immobilization of Rh on Attapulgite and Its Application in Cyclohexene Hydrogenation. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 2185-2190	3.8	76
108	Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process. Journal of the American Chemical Society, 2007 , 129, 6362-3	16.4	288
107	Novel microemulsions: ionic liquid-in-ionic liquid. <i>Chemical Communications</i> , 2007 , 2497-9	5.8	76
106	Supported choline chloride/urea as a heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates. <i>Green Chemistry</i> , 2007 , 9, 169-172	10	205
105	Reverse micelles in carbon dioxide with ionic-liquid domains. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 3313-5	16.4	107
104	CO(2) cycloaddition reactions catalyzed by an ionic liquid grafted onto a highly cross-linked polymer matrix. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 7255-8	16.4	401
103	Reverse Micelles in Carbon Dioxide with Ionic-Liquid Domains. <i>Angewandte Chemie</i> , 2007 , 119, 3377-33	79 .6	18
102	CO2 Cycloaddition Reactions Catalyzed by an Ionic Liquid Grafted onto a Highly Cross-Linked Polymer Matrix. <i>Angewandte Chemie</i> , 2007 , 119, 7393-7396	3.6	110
101	Cleaning Using CO2-Based Solvents. <i>Clean - Soil, Air, Water</i> , 2007 , 35, 223-229	1.6	18
100	Preparation of silica and titanium-containing silica hollow spheres at supercritical CO2/H2O interface. <i>Journal of Supercritical Fluids</i> , 2007 , 42, 142-149	4.2	13
99	Functional ionic liquid from biorenewable materials: synthesis and application as a catalyst in direct aldol reactions. <i>Tetrahedron Letters</i> , 2007 , 48, 5613-5617	2	130
98	Study of ethylene glycol/TX-100/ionic liquid microemulsions. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2007 , 302, 211-215	5.1	58
97	Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. <i>Carbon</i> , 2007 , 45, 1795-18	o1 ^{0.4}	32 0
96	Novozym 435 catalyzed regioselective acylation of ethane-1,2-diol in the presence of ionic liquids. <i>Catalysis Letters</i> , 2007 , 116, 46-49	2.8	9
95	Effect of ultrasound on the microstructure of polystyrene in cyclohexane: a synchrotron small-angle X-ray scattering study. <i>Colloid and Polymer Science</i> , 2007 , 285, 1275-1279	2.4	2
94	Sonochemical formation of single-crystalline gold nanobelts. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 1116-9	16.4	217
93	Optical and Bioelectrochemical Characterization of Water-Miscible Ionic Liquids Based Composites of Multiwalled Carbon Nanotubes. <i>Electroanalysis</i> , 2006 , 18, 1681-1688	3	29

92	Ru Nanoparticles Immobilized on Montmorillonite by Ionic Liquids: A Highly Efficient Heterogeneous Catalyst for the Hydrogenation of Benzene. <i>Angewandte Chemie</i> , 2006 , 118, 272-275	3.6	38
91	Solvothermal synthesis of carbon nitrogen nanotubes and nanofibers. <i>Journal of Materials Research</i> , 2006 , 21, 1658-1663	2.5	10
90	Synthesis and characterization of TiO2hontmorillonite nanocomposites and their application for removal of methylene blue. <i>Journal of Materials Chemistry</i> , 2006 , 16, 579-584		65
89	Study on guanidine-based task-specific ionic liquids as catalysts for direct aldol reactions without solvent. <i>New Journal of Chemistry</i> , 2006 , 30, 736	3.6	52
88	A cyclic voltammetric technique for the detection of micro-regions of bmimPF6/Tween 20/H2O microemulsions and their performance characterization by UV-Vis spectroscopy. <i>Green Chemistry</i> , 2006 , 8, 43-49	10	197
87	Knoevenagel Condensation Catalyzed by 1,1,3,3-Tetramethylguanidium Lactate. <i>Synthetic Communications</i> , 2006 , 36, 3305-3317	1.7	40
86	Preparation of silica microrods with nano-sized pores in ionic liquid microemulsions. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2006 , 286, 117-120	5.1	50
85	Micropolarity and aggregation behavior in ionic liquid + organic solvent solutions. <i>Fluid Phase Equilibria</i> , 2006 , 248, 211-216	2.5	59
84	Utilization of Supercritical Carbon Dioxide for the Preparation of 3-Hydroxyflavone and ECyclodextrin Complex. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 2006 , 55, 37-40		8
83	Microwave-Assisted Synthesis of Pt Nanocrystals and Deposition on Carbon Nanotubes in Ionic Liquids. <i>Journal of Nanoscience and Nanotechnology</i> , 2006 , 6, 175-179	1.3	23
82	Ru nanoparticles immobilized on montmorillonite by ionic liquids: a highly efficient heterogeneous catalyst for the hydrogenation of benzene. <i>Angewandte Chemie - International Edition</i> , 2005 , 45, 266-9	16.4	181
81	Phase Behavior, Densities, and Isothermal Compressibility of the CO2 + Ethanol + Dichloromethane Ternary System in Different Phase Regions. <i>Journal of Chemical & Dichloromethane</i> 1153	- 71 856	7
80	Polypropylene/Silica Nanocomposites Prepared by in-Situ Sol L iel Reaction with the Aid of CO2. <i>Macromolecules</i> , 2005 , 38, 5617-5624	5.5	71
79	TX-100/water/1-butyl-3-methylimidazolium hexafluorophosphate microemulsions. <i>Langmuir</i> , 2005 , 21, 5681-4	4	288
78	Direct aldol reactions catalyzed by 1,1,3,3-tetramethylguanidine lactate without solvent. <i>Green Chemistry</i> , 2005 , 7, 514	10	99
77	Fabrication and characterization of magnetic carbon nanotube composites. <i>Journal of Materials Chemistry</i> , 2005 , 15, 4497		76
76	Hexagonal liquid crystalline phases formed in ternary systems of Brij 97-water-ionic liquids. <i>Langmuir</i> , 2005 , 21, 4931-7	4	101
75	Phase Behaviors, Density, and Isothermal Compressibility of Styrene + CO2, Ethylbenzene + CO2, and Ethylbezene + Styrene + CO2 Systems. <i>Journal of Chemical & Chemical & Compression of Chemical & Chemical & Compression of Chem</i>	1 ² 8 ⁸ 22	12

(2004-2005)

74	A green and effective method to synthesize ionic liquids: supercritical CO2 route. <i>Green Chemistry</i> , 2005 , 7, 701	10	57
73	Phase separation of the reaction system induced by CO2 and conversion enhancement for the esterification of acetic acid with ethanol in ionic liquid. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 16176	5 <i>3</i> 34	35
72	Synthesis of mesoporous SrCO3 spheres and hollow CaCO3 spheres in room-temperature ionic liquid. <i>Microporous and Mesoporous Materials</i> , 2005 , 83, 145-149	5.3	66
71	Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide). <i>Biomaterials</i> , 2005 , 26, 4453-9	15.6	297
70	Nonaqueous microemulsion-containing ionic liquid [bmim][PF6] as polar microenvironment. <i>Colloid and Polymer Science</i> , 2005 , 283, 1371-1375	2.4	59
69	A Novel Method to Immobilize Ru Nanoparticles on SBA-15 Firmly by Ionic Liquid and Hydrogenation of Arene. <i>Catalysis Letters</i> , 2005 , 103, 59-62	2.8	58
68	Studies on Dynamic Surface Tension of an Outstanding Microemulsifier in Supercritical CO2 and Its Wetting Performance. <i>Journal of Dispersion Science and Technology</i> , 2005 , 26, 745-751	1.5	4
67	Compressed CO2-enhanced solubilization of 1-butyl-3-methylimidazolium tetrafluoroborate in reverse micelles of Triton X-100. <i>Journal of Chemical Physics</i> , 2004 , 121, 7408-12	3.9	14
66	Synthesis and characterization of polyether structure carbon nitride. <i>Journal of Materials Research</i> , 2004 , 19, 1736-1741	2.5	17
65	Mannich reaction using acidic ionic liquids as catalysts and solvents. <i>Green Chemistry</i> , 2004 , 6, 75	10	249
64	Preparation of polyacrylamide/CdS nanocomposites by a combination of reverse microemulsion and CO2 antisolvent techniques. <i>Colloid and Polymer Science</i> , 2004 , 282, 1179-1183	2.4	7
63	Insoluble Wilkinson Catalyst RhCl(TPPTS)3 Supported on SBA-15 for Heterogeneous Hydrogenation with and Without Supercritical CO2. <i>Catalysis Letters</i> , 2004 , 98, 225-228	2.8	11
62	Stability of high-bandwidth graded-index polymer optical fiber. <i>Journal of Applied Polymer Science</i> , 2004 , 91, 2330-2334	2.9	8
61	Supercritical CO2 assisted processing of polystyrene/nylon 1212 blends and CO2-induced epitaxy on nylon 1212. <i>Journal of Applied Polymer Science</i> , 2004 , 92, 2023-2029	2.9	9
60	Synthesis of montmorillonite/polystyrene nanocomposites in supercritical carbon dioxide. <i>Journal of Applied Polymer Science</i> , 2004 , 94, 1194-1197	2.9	16
59	Preparation of cadmium sulfide/poly(methyl methacrylate) composites by precipitation with compressed CO2. <i>Journal of Applied Polymer Science</i> , 2004 , 94, 1643-1648	2.9	22
58	Pd nanoparticles immobilized on molecular sieves by ionic liquids: heterogeneous catalysts for solvent-free hydrogenation. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 1397-9	16.4	207
57	Desulfurization of flue gas: SO(2) absorption by an ionic liquid. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 2415-7	16.4	453

56	A simple route to micropatterned polymer surfaces. Chemical Communications, 2004, 800-1	5.8	17
55	Tri-phase behavior of ionic liquidWater©O2 system at elevated pressures. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 5051-5055	3.6	52
54	A study of tri-phasic behavior of ionic liquidthethanol@O2 systems at elevated pressures. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 2352-2357	3.6	44
53	Effects of ultrasound on the microenvironment in reverse micelles and synthesis of nanorods and nanofibers. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 2391	3.6	16
52	Effect of Ionic Liquids on the Chemical Equilibrium of Esterification of Carboxylic Acids with Alcohols. <i>Synthetic Communications</i> , 2004 , 34, 225-230	1.7	24
51	Microemulsions with ionic liquid polar domains. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 2914	3.6	311
50	Preparation of Room-Temperature Ionic Liquids by Neutralization of 1,1,3,3-Tetramethylguanidine with Acids and their Use as Media for Mannich Reaction. <i>Synthetic Communications</i> , 2004 , 34, 3083-308	9 ^{1.7}	99
49	Study on the phase behaviors, viscosities, and thermodynamic properties of CO2/[C(4)mim][PF(6)]/methanol system at elevated pressures. <i>Chemistry - A European Journal</i> , 2003 , 9, 3897-903	4.8	161
48	Precipitation polymerization of acrylic acid in compressed carbon dioxidellosolvent systems. Journal of Applied Polymer Science, 2003 , 88, 1876-1880	2.9	6
47	Precipitation polymerization of methyl methacrylate in tetrahydrofuran with compressed CO2 as antisolvent. <i>Journal of Applied Polymer Science</i> , 2003 , 88, 2427-2433	2.9	15
46	Conductivities and Viscosities of the Ionic Liquid [bmim][PF6] + Water + Ethanol and [bmim][PF6] + Water + Acetone Ternary Mixtures. <i>Journal of Chemical & Data</i> , 2003, 48, 1315-1317	2.8	78
45	Compressed Ethylene-Assisted Formation of the Reverse Micelle of PEOPPOPEO Copolymer. <i>Macromolecules</i> , 2003 , 36, 1289-1294	5.5	13
44	Recovery of Nanoparticles from (EO)8(PO)50(EO)8/p-Xylene/H2O Microemulsions by Tuning the Temperature. <i>Langmuir</i> , 2003 , 19, 8611-8614	4	59
43	Hydrogenation of olefins using ligand-stabilized palladium nanoparticles in an ionic liquid. <i>Chemical Communications</i> , 2003 , 1654	5.8	176
42	Preparation of mesoporous MCM-41/poly(acrylic acid) composites using supercritical CO2 as a solvent. <i>Journal of Materials Chemistry</i> , 2003 , 13, 1373		16
41	Effect of dissolved CO2 on the conductivity of the ionic liquid [bmim][PF6]. <i>New Journal of Chemistry</i> , 2003 , 27, 333-336	3.6	47
40	Effect of compressed CO2 on the size and stability of reverse micelles: Small-angle x-ray scattering and phase behavior study. <i>Journal of Chemical Physics</i> , 2003 , 118, 3329-3333	3.9	18
39	Effect of compressed CO2 on the properties of AOT reverse micelles studied by spectroscopy and phase behavior. <i>Journal of Chemical Physics</i> , 2003 , 119, 4873-4878	3.9	20

38	Preparation of Poly(vinyl chloride)/Polystyrene Miscible Blends Using Supercritical CO2 as a Swelling Agent. <i>Macromolecular Rapid Communications</i> , 2002 , 23, 626	4.8	14
37	Characterization of refractive index distribution of polymer optical fiber. <i>Science Bulletin</i> , 2002 , 47, 982	-985	1
36	Complexation-supercritical carbon dioxide extraction of copper ions from solid matrices with thenoyltrifluoroacetone and modifiers. <i>Separation Science and Technology</i> , 2002 , 37, 2691-2700	2.5	2
35	Solubility of Ls-36 and Ls-45 Surfactants in Supercritical CO2and Loading Water in the CO2/Water/Surfactant Systems. <i>Langmuir</i> , 2002 , 18, 3086-3089	4	62
34	How does magnetic field affect polymerization in supercritical fluids? Study of radical polymerization in supercritical CO2. <i>New Journal of Chemistry</i> , 2002 , 26, 958-961	3.6	7
33	Selective oxidation of cyclohexane in compressed CO2 and in liquid solvents over MnAPO-5 molecular sieve. <i>Green Chemistry</i> , 2002 , 4, 426-430	10	30
32	Composites Prepared by the Polymerization of Styrene within Supercritical CO2-Swollen Polypropylene. <i>Chemistry of Materials</i> , 2002 , 14, 4619-4623	9.6	34
31	Synthesis of composites of silicon rubber and polystyrene using supercritical CO2 as a swelling agent. <i>Journal of Materials Chemistry</i> , 2002 , 12, 2688-2691		10
30	Synthesis of dimethyl carbonate using CO2 and methanol: enhancing the conversion by controlling the phase behavior. <i>Green Chemistry</i> , 2002 , 4, 467-471	10	44
29	Modification of isotactic polypropylene film by grafting of acrylic acid using supercritical CO2 as a swelling agent. <i>Journal of Materials Chemistry</i> , 2002 , 12, 3565-3569		33
28	Wacker oxidation of 1-hexene in 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), supercritical (SC) CO2, and SC CO2/[bmim][PF6] mixed solvent. <i>New Journal of Chemistry</i> , 2002 , 26, 1246-1248	3.6	53
27	Measurement of critical points of the methylcyclohexane (MCH)⊞2ሺO2 system in the CO2-rich region. <i>Fluid Phase Equilibria</i> , 2001 , 179, 131-138	2.5	31
26	A new method to recover the nanoparticles from reverse micelles: recovery of ZnS nanoparticles synthesized in reverse micelles by compressed CO2. <i>Chemical Communications</i> , 2001 , 2724-2725	5.8	46
25	Investigation on Interaction between Sodium Dodecyl Sulfate and Polyacrylamide by Electron Spin Resonance and Ultraviolet Spectrum. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 4824-4826	3.4	11
24	Investigation of Nonionic Surfactant Dynol-604 Based Reverse Microemulsions Formed in Supercritical Carbon Dioxide. <i>Langmuir</i> , 2001 , 17, 8040-8043	4	91
23	A titration microcalorimeter and the vesicle of mixed surfactants. <i>Science in China Series B: Chemistry</i> , 2000 , 43, 617-624		3
22	Solubilities of 1,2,3-trimethylbenzene and 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene in t-butyl alcohol+water mixtures and hydrophobic interaction. <i>Science in China Series B: Chemistry</i> , 1999 , 42, 400-410		6
21	Solubilities of benzene, toluene and diphenyl in the t-butyl alcohol+water mixtures and hydrophobic interaction. <i>Science in China Series B: Chemistry</i> , 1999 , 42, 225-235		5

20	Equilibrium Constant and Enthalpy for the Hydrogen Bonding of Acetic Acid with Tetrahydrofuran in Supercritical CO2. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 5240-5245	2.8	27
19	Solubility of Behenic Acid in Supercritical CO2withn-Pentane orn-Octane Cosolvents. <i>Journal of Chemical & Data</i> , 1999 , 44, 1204-1206	2.8	7
18	UV-Vis spectroscopic study of molecular clustering in supercritical CO2-acetone mixtures. <i>Zeitschrift Fur Elektrotechnik Und Elektrochemie</i> , 1998 , 102, 695-700		15
17	Phase equilibria of supercritical C02-ethanol-stearic acid ternary system and hydrogen bonding between ethanol and stearic acid. <i>Science in China Series B: Chemistry</i> , 1998 , 41, 410-417		4
16	Thermodynamic study on conformation change of carbonic anhydrase. <i>Science Bulletin</i> , 1998 , 43, 1802-	-1805	
15	Interactions between Sodium Dodecyl Sulfate and Hydrophobically Modified Poly(acrylamide)s Studied by Electron Spin Resonance and Transmission Electron Microscopy. <i>Langmuir</i> , 1998 , 14, 2050-2	0 \$ 4	34
14	The Role of Chain Length and Structure in Surfactant Adsorption at Na-Kaolinite. <i>Adsorption Science and Technology</i> , 1998 , 16, 565-575	3.6	4
13	The Hydrophobic Effect in the Adsorption Process of Alkyltrimethylammonium Bromides on to Activated Carbon. <i>Adsorption Science and Technology</i> , 1998 , 16, 557-564	3.6	3
12	Microcalorimetry Study of Interaction between Ionic Surfactants and Hydrophobically Modified Polymers in Aqueous Solutions. <i>Langmuir</i> , 1997 , 13, 3119-3123	4	79
11	Vapor Pressure of the Aqueous Solution of Sodium Dodecyl Sulfate. <i>Journal of Chemical &</i> Engineering Data, 1996 , 41, 285-286	2.8	6
10	Solubility of ethane int-butanol + water mixtures and a hydrophobic interaction study. <i>Journal of Solution Chemistry</i> , 1996 , 25, 1281-1289	1.8	9
9	Vapor pressure of dimethyl sulfoxide and water binary system. <i>Journal of Solution Chemistry</i> , 1995 , 24, 1183-1189	1.8	34
8	Enthalpy of adsorption and adsorption isotherms of polyacrylamide on sea sand. <i>Journal of Thermal Analysis</i> , 1995 , 45, 7-12		1
7	Boosting CO2 electroreduction over Co nanoparticles supported on N,B-co-doped graphitic carbon. Green Chemistry,	10	1
6	Tuning the efficiency and product composition for electrocatalytic CO2 reduction to syngas over zinc films by morphology and wettability. <i>Green Chemistry</i> ,	10	О
5	Synthesis of Carboxylic Acids via Hydrocarboxylation of Alcohols with CO2 and H2. <i>Green Chemistry</i> ,	10	1
4	Boosting CO2 electroreduction to C2+ products on Fluorine-doped copper. <i>Green Chemistry</i> ,	10	О
3	Production of alkoxyl-functionalized cyclohexylamines from lignin-derived guaiacols. <i>Green Chemistry</i> ,	10	4

LIST OF PUBLICATIONS

2	Construction of Synergistic Co and Cu Diatomic Sites for Enhanced Higher Alcohol Synthesis. <i>CCS Chemistry</i> ,1-30	7.2	1	
1	Semiconductor Nanocrystals Emitting in the Second Near-Infrared Window: Optical Properties and	8.1	3	