List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2130343/publications.pdf Version: 2024-02-01

RUYING HAN

#	Article	IF	CITATIONS
1	Fundamentals and Challenges of Electrochemical CO2 Reduction Using Two-Dimensional Materials. CheM, 2017, 3, 560-587.	5.8	815
2	Green Carbon Science: Scientific Basis for Integrating Carbon Resource Processing, Utilization, and Recycling. Angewandte Chemie - International Edition, 2013, 52, 9620-9633.	7.2	750
3	Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids. Chemical Reviews, 2017, 117, 6834-6880.	23.0	706
4	Selective Phenol Hydrogenation to Cyclohexanone Over a Dual Supported Pd–Lewis Acid Catalyst. Science, 2009, 326, 1250-1252.	6.0	566
5	Desulfurization of Flue Gas: SO2 Absorption by an Ionic Liquid. Angewandte Chemie - International Edition, 2004, 43, 2415-2417.	7.2	504
6	CO ₂ Cycloaddition Reactions Catalyzed by an Ionic Liquid Grafted onto a Highly Crossâ€Linked Polymer Matrix. Angewandte Chemie - International Edition, 2007, 46, 7255-7258.	7.2	450
7	Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid. Green Chemistry, 2009, 11, 1746.	4.6	442
8	MOF-5/n-Bu4NBr: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions. Green Chemistry, 2009, 11, 1031.	4.6	427
9	Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon, 2007, 45, 1795-1801.	5.4	341
10	Microemulsions with ionic liquid polar domains. Physical Chemistry Chemical Physics, 2004, 6, 2914.	1.3	332
11	Solubility of CO ₂ in a Choline Chloride + Urea Eutectic Mixture. Journal of Chemical & Engineering Data, 2008, 53, 548-550.	1.0	328
12	Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(l-lactide). Biomaterials, 2005, 26, 4453-4459.	5.7	322
13	Facile Synthesis of High Quality TiO2 Nanocrystals in Ionic Liquid via a Microwave-Assisted Process. Journal of the American Chemical Society, 2007, 129, 6362-6363.	6.6	310
14	Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials. Green Chemistry, 2008, 10, 1280.	4.6	306
15	TX-100/Water/1-Butyl-3-methylimidazolium Hexafluorophosphate Microemulsions. Langmuir, 2005, 21, 5681-5684.	1.6	300
16	Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nature Communications, 2019, 10, 3851.	5.8	288
17	Metal–Organic Framework Nanospheres with Wellâ€Ordered Mesopores Synthesized in an Ionic Liquid/CO ₂ /Surfactant System. Angewandte Chemie - International Edition, 2011, 50, 636-639.	7.2	280
18	Mannich reaction using acidic ionic liquids as catalysts and solventsElectronic supplementary information (ESI) available: spectral data for the Mannich products, IR spectrum of the acidic ionic liquids. See http://www.rsc.org/suppdata/gc/b3/b309700p/. Green Chemistry, 2004, 6, 75.	4.6	271

#	Article	IF	CITATIONS
19	Hydrogenation of Carbon Dioxide is Promoted by a Taskâ€Specific Ionic Liquid. Angewandte Chemie - International Edition, 2008, 47, 1127-1129.	7.2	269
20	Highly efficient synthesis of cyclic carbonates from CO ₂ and epoxides over cellulose/KI. Chemical Communications, 2011, 47, 2131-2133.	2.2	264
21	Highly Electrocatalytic Ethylene Production from CO ₂ on Nanodefective Cu Nanosheets. Journal of the American Chemical Society, 2020, 142, 13606-13613.	6.6	260
22	Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nature Communications, 2019, 10, 677.	5.8	258
23	Conversion of glucose and cellulose into value-added products in water and ionic liquids. Green Chemistry, 2013, 15, 2619.	4.6	256
24	Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters. Green Chemistry, 2008, 10, 879.	4.6	242
25	Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nature Communications, 2019, 10, 2980.	5.8	235
26	Transformation of Atmospheric CO ₂ Catalyzed by Protic Ionic Liquids: Efficient Synthesis of 2â€Oxazolidinones. Angewandte Chemie - International Edition, 2015, 54, 5399-5403.	7.2	229
27	Supported choline chloride/urea as a heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates. Green Chemistry, 2007, 9, 169-172.	4.6	228
28	Porous Zirconium–Phytic Acid Hybrid: a Highly Efficient Catalyst for Meerwein–Ponndorf–Verley Reductions. Angewandte Chemie - International Edition, 2015, 54, 9399-9403.	7.2	227
29	Sonochemical Formation of Single-Crystalline Gold Nanobelts. Angewandte Chemie - International Edition, 2006, 45, 1116-1119.	7.2	226
30	Molybdenum–Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol. Angewandte Chemie - International Edition, 2016, 55, 6771-6775.	7.2	225
31	Highly efficient electrochemical reduction of CO ₂ to CH ₄ in an ionic liquid using a metal–organic framework cathode. Chemical Science, 2016, 7, 266-273.	3.7	225
32	Pd Nanoparticles Immobilized on Molecular Sieves by Ionic Liquids: Heterogeneous Catalysts for Solvent-Free Hydrogenation. Angewandte Chemie - International Edition, 2004, 43, 1397-1399.	7.2	224
33	Highly Efficient Electroreduction of CO ₂ to Methanol on Palladium–Copper Bimetallic Aerogels. Angewandte Chemie - International Edition, 2018, 57, 14149-14153.	7.2	222
34	Efficient SO2 absorption by renewable choline chloride–glycerol deep eutectic solvents. Green Chemistry, 2013, 15, 2261.	4.6	215
35	A cyclic voltammetric technique for the detection of micro-regions of bmimPF6/Tween 20/H2O microemulsions and their performance characterization by UV-Visspectroscopy. Green Chemistry, 2006, 8, 43-49.	4.6	205
36	Waterâ€Enhanced Synthesis of Higher Alcohols from CO ₂ Hydrogenation over a Pt/Co ₃ O ₄ Catalyst under Milder Conditions. Angewandte Chemie - International Edition, 2016, 55, 737-741.	7.2	203

#	Article	IF	CITATIONS
37	Efficient Reduction of CO ₂ into Formic Acid on a Lead or Tin Electrode using an Ionic Liquid Catholyte Mixture. Angewandte Chemie - International Edition, 2016, 55, 9012-9016.	7.2	202
38	MoP Nanoparticles Supported on Indiumâ€Doped Porous Carbon: Outstanding Catalysts for Highly Efficient CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2018, 57, 2427-2431.	7.2	199
39	Ru Nanoparticles Immobilized on Montmorillonite by Ionic Liquids: A Highly Efficient Heterogeneous Catalyst for the Hydrogenation of Benzene. Angewandte Chemie - International Edition, 2006, 45, 266-269.	7.2	193
40	Hydrogenation of olefins using ligand-stabilized palladium nanoparticles in an ionic liquid. Chemical Communications, 2003, , 1654.	2.2	192
41	Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids. Green Chemistry, 2009, 11, 873.	4.6	187
42	Very highly efficient reduction of CO ₂ to CH ₄ using metal-free N-doped carbon electrodes. Chemical Science, 2016, 7, 2883-2887.	3.7	183
43	Solvent-free synthesis of substituted ureas from CO2 and amines with a functional ionic liquid as the catalyst. Green Chemistry, 2008, 10, 465.	4.6	180
44	Synthesis of cyclic carbonates from epoxides and CO2 catalyzed by potassium halide in the presence of β-cyclodextrin. Green Chemistry, 2008, 10, 1337.	4.6	179
45	Highly mesoporous metal–organic framework assembled in a switchable solvent. Nature Communications, 2014, 5, 4465.	5.8	177
46	Imidazolium-Based Ionic Liquids Catalyzed Formylation of Amines Using Carbon Dioxide and Phenylsilane at Room Temperature. ACS Catalysis, 2015, 5, 4989-4993.	5.5	173
47	Study on the Phase Behaviors, Viscosities, and Thermodynamic Properties of CO2/[C4mim][PF6]/Methanol System at Elevated Pressures. Chemistry - A European Journal, 2003, 9, 3897-3903.	1.7	171
48	Dispersion of graphene sheets in ionic liquid [bmim][PF ₆] stabilized by an ionic liquid polymer. Chemical Communications, 2010, 46, 386-388.	2.2	169
49	Cycloaddition of CO2 to epoxides catalyzed by imidazolium-based polymeric ionic liquids. Green Chemistry, 2013, 15, 1584.	4.6	169
50	A new porous Zr-containing catalyst with a phenate group: an efficient catalyst for the catalytic transfer hydrogenation of ethyl levulinate to Î ³ -valerolactone. Green Chemistry, 2015, 17, 1626-1632.	4.6	163
51	Eosinâ€Yâ€Functionalized Conjugated Organic Polymers for Visibleâ€Lightâ€Driven CO ₂ Reductio with H ₂ O to CO with High Efficiency. Angewandte Chemie - International Edition, 2019, 58, 632-636.	n 7.2	162
52	Functional ionic liquid from biorenewable materials: synthesis and application as a catalyst in direct aldol reactions. Tetrahedron Letters, 2007, 48, 5613-5617.	0.7	149
53	The catalytic mechanism of KI and the co-catalytic mechanism of hydroxyl substances for cycloaddition of CO2 with propylene oxide. Green Chemistry, 2012, 14, 2410.	4.6	149
54	Highly Efficient Electroreduction of CO ₂ to C2+ Alcohols on Heterogeneous Dual Active Sites. Angewandte Chemie - International Edition, 2020, 59, 16459-16464.	7.2	148

#	Article	IF	CITATIONS
55	Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling towards Carbon Neutrality. Angewandte Chemie - International Edition, 2022, 61, .	7.2	146
56	MIL-125-NH ₂ @TiO ₂ Core–Shell Particles Produced by a Post-Solvothermal Route for High-Performance Photocatalytic H ₂ Production. ACS Applied Materials & Interfaces, 2018, 10, 16418-16423.	4.0	143
57	Atomic Indium Catalysts for Switching CO ₂ Electroreduction Products from Formate to CO. Journal of the American Chemical Society, 2021, 143, 6877-6885.	6.6	140
58	Synthesis of liquid fuel via direct hydrogenation of CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12654-12659.	3.3	138
59	Boosting CO ₂ Electroreduction on N,Pâ€Coâ€doped Carbon Aerogels. Angewandte Chemie - International Edition, 2020, 59, 11123-11129.	7.2	138
60	Hydrogenation of CO ₂ to Formic Acid Promoted by a Diamineâ€Functionalized Ionic Liquid. ChemSusChem, 2009, 2, 234-238.	3.6	137
61	Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2. Nature Communications, 2016, 7, 11481.	5.8	137
62	Zinc(<scp>ii</scp>)-catalyzed reactions of carbon dioxide and propargylic alcohols to carbonates at room temperature. Green Chemistry, 2016, 18, 382-385.	4.6	136
63	Cobalt catalysts: very efficient for hydrogenation of biomass-derived ethyl levulinate to gamma-valerolactone under mild conditions. Green Chemistry, 2014, 16, 3870-3875.	4.6	134
64	Reversible Capture of SO ₂ through Functionalized Ionic Liquids. ChemSusChem, 2013, 6, 1191-1195.	3.6	131
65	Synthesis of Functional Nanomaterials in Ionic Liquids. Advanced Materials, 2016, 28, 1011-1030.	11.1	129
66	Immobilization of Pdnanoparticles with functional ionic liquid grafted onto cross-linked polymer for solvent-free Heck reaction. Green Chemistry, 2010, 12, 65-69.	4.6	126
67	Enhancing the electrocatalytic activity of CoO for the oxidation of 5-hydroxymethylfurfural by introducing oxygen vacancies. Green Chemistry, 2020, 22, 843-849.	4.6	126
68	Metalated Mesoporous Poly(triphenylphosphine) with Azo Functionality: Efficient Catalysts for CO ₂ Conversion. ACS Catalysis, 2016, 6, 1268-1273.	5.5	122
69	Surfactant-directed assembly of mesoporous metal–organic framework nanoplates in ionic liquids. Chemical Communications, 2012, 48, 8688.	2.2	120
70	Dual-ionic liquid system: an efficient catalyst for chemical fixation of CO ₂ to cyclic carbonates under mild conditions. Green Chemistry, 2018, 20, 2990-2994.	4.6	120
71	Efficient synthesis of quinazoline-2,4(1H,3H)-diones from CO ₂ using ionic liquids as a dual solvent–catalyst at atmospheric pressure. Green Chemistry, 2014, 16, 221-225.	4.6	118
72	Reverse Micelles in Carbon Dioxide with Ionic-Liquid Domains. Angewandte Chemie - International Edition, 2007, 46, 3313-3315.	7.2	117

#	Article	IF	CITATIONS
73	Hydrogenolysis of glycerol catalyzed by Ru-Cu bimetallic catalysts supported on clay with the aid of ionic liquids. Green Chemistry, 2009, 11, 1000.	4.6	115
74	Synthesis of ketones from biomass-derived feedstock. Nature Communications, 2017, 8, 14190.	5.8	115
75	Large-scale production of high-quality graphene using glucose and ferric chloride. Chemical Science, 2014, 5, 4656-4660.	3.7	113
76	Solvent-free Heck reaction catalyzed by a recyclable Pd catalyst supported on SBA-15 via an ionic liquid. Green Chemistry, 2008, 10, 59-66.	4.6	111
77	Ionic liquid accelerates the crystallization of Zr-based metal–organic frameworks. Nature Communications, 2017, 8, 175.	5.8	111
78	Ru nanoparticles immobilized on metal–organic framework nanorods by supercritical CO2-methanol solution: highly efficient catalyst. Green Chemistry, 2011, 13, 2078.	4.6	108
79	Preparation of Roomâ€Temperature Ionic Liquids by Neutralization of 1,1,3,3â€Tetramethylguanidine with Acids and their Use as Media for Mannich Reaction. Synthetic Communications, 2004, 34, 3083-3089.	1.1	107
80	Ambient Reductive Amination of Levulinic Acid to Pyrrolidones over Pt Nanocatalysts on Porous TiO ₂ Nanosheets. Journal of the American Chemical Society, 2019, 141, 4002-4009.	6.6	106
81	Hexagonal Liquid Crystalline Phases Formed in Ternary Systems of Brij 97â^'Waterâ^'lonic Liquids. Langmuir, 2005, 21, 4931-4937.	1.6	105
82	Ionic Liquid-Catalyzed C–S Bond Construction using CO ₂ as a C1 Building Block under Mild Conditions: A Metal-Free Route to Synthesis of Benzothiazoles. ACS Catalysis, 2015, 5, 6648-6652.	5.5	105
83	Biomass-derived \hat{I}^3 -valerolactone as an efficient solvent and catalyst for the transformation of CO ₂ to formamides. Green Chemistry, 2016, 18, 3956-3961.	4.6	105
84	Direct aldol reactions catalyzed by 1,1,3,3-tetramethylguanidine lactate without solvent. Green Chemistry, 2005, 7, 514.	4.6	104
85	Emerging heterogeneous catalysts for biomass conversion: studies of the reaction mechanism. Chemical Society Reviews, 2021, 50, 11270-11292.	18.7	102
86	Highly selective photocatalytic oxidation of biomass-derived chemicals to carboxyl compounds over Au/TiO ₂ . Green Chemistry, 2017, 19, 1075-1081.	4.6	101
87	Synthesis of Carbonâ€Nanotube Composites Using Supercritical Fluids and Their Potential Applications. Advanced Materials, 2009, 21, 825-829.	11.1	100
88	Sustainable production of benzene from lignin. Nature Communications, 2021, 12, 4534.	5.8	100
89	Investigation of Nonionic Surfactant Dynol-604 Based Reverse Microemulsions Formed in Supercritical Carbon Dioxide. Langmuir, 2001, 17, 8040-8043.	1.6	99
90	Visible-Light-Driven Photoreduction of CO ₂ to CH ₄ over N,O,P-Containing Covalent Organic Polymer Submicrospheres. ACS Catalysis, 2018, 8, 4576-4581.	5.5	99

#	Article	IF	CITATIONS
91	Photocatalytic CO ₂ Transformation to CH ₄ by Ag/Pd Bimetals Supported on N-Doped TiO ₂ Nanosheet. ACS Applied Materials & Interfaces, 2018, 10, 24516-24522.	4.0	99
92	One-pot conversion of CO2 and glycerol to value-added products using propylene oxide as the coupling agent. Green Chemistry, 2012, 14, 1743.	4.6	98
93	Stabilization of Cu ⁺ by tuning a CuO–CeO ₂ interface for selective electrochemical CO ₂ reduction to ethylene. Green Chemistry, 2020, 22, 6540-6546.	4.6	98
94	One-Step Synthesis of Highly Efficient Nanocatalysts on the Supports with Hierarchical Pores Using Porous Ionic Liquid-Water Gel. Journal of the American Chemical Society, 2014, 136, 3768-3771.	6.6	95
95	Solvent determines the formation and properties of metal–organic frameworks. RSC Advances, 2015, 5, 37691-37696.	1.7	95
96	Highly effective photoreduction of CO ₂ to CO promoted by integration of CdS with molecular redox catalysts through metal–organic frameworks. Chemical Science, 2018, 9, 8890-8894.	3.7	95
97	Preparation of Catalytic Materials Using Ionic Liquids as the Media and Functional Components. Advanced Materials, 2014, 26, 6810-6827.	11.1	94
98	Switching the basicity of ionic liquids by CO2. Green Chemistry, 2008, 10, 1142.	4.6	93
99	Task-specific ionic liquid and CO ₂ -cocatalysed efficient hydration of propargylic alcohols to α-hydroxy ketones. Chemical Science, 2015, 6, 2297-2301.	3.7	93
100	Efficient and Mild Transfer Hydrogenolytic Cleavage of Aromatic Ether Bonds in Lignin-Derived Compounds over Ru/C. ACS Sustainable Chemistry and Engineering, 2018, 6, 2872-2877.	3.2	93
101	Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO ₂ to CO. Chemical Science, 2018, 9, 483-487.	3.7	93
102	Efficient hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over a cobalt and copper bimetallic catalyst on N-graphene-modified Al ₂ O ₃ . Green Chemistry, 2016, 18, 6222-6228.	4.6	92
103	Selective hydrogenation of 5-(hydroxymethyl)furfural to 5-methylfurfural over single atomic metals anchored on Nb2O5. Nature Communications, 2021, 12, 584.	5.8	92
104	Design of a Cu(<scp>i</scp>)/C-doped boron nitride electrocatalyst for efficient conversion of CO ₂ into acetic acid. Green Chemistry, 2017, 19, 2086-2091.	4.6	91
105	Aqueous CO ₂ Reduction with High Efficiency Using α o(OH) ₂ â€5upported Atomic Ir Electrocatalysts. Angewandte Chemie - International Edition, 2019, 58, 4669-4673.	7.2	90
106	Integration of mesopores and crystal defects in metal-organic frameworks via templated electrosynthesis. Nature Communications, 2019, 10, 4466.	5.8	90
107	Selectively transform lignin into value-added chemicals. Chinese Chemical Letters, 2019, 30, 15-24.	4.8	90
108	Highly Efficient CO ₂ Electroreduction to Methanol through Atomically Dispersed Sn Coupled with Defective CuO Catalysts. Angewandte Chemie - International Edition, 2021, 60, 21979-21987.	7.2	90

#	Article	IF	CITATIONS
109	Pd nanoparticles immobilized on sepiolite by ionic liquids: efficient catalysts for hydrogenation of alkenes and Heck reactions. Green Chemistry, 2009, 11, 96-101.	4.6	89
110	Efficient electroreduction of CO ₂ to C ₂₊ products on CeO ₂ modified CuO. Chemical Science, 2021, 12, 6638-6645.	3.7	89
111	Catalytic self-transfer hydrogenolysis of lignin with endogenous hydrogen: road to the carbon-neutral future. Chemical Society Reviews, 2022, 51, 1608-1628.	18.7	89
112	Efficient synthesis of quinazoline-2,4(1H,3H)-diones from CO2 and 2-aminobenzonitriles in water without any catalyst. Green Chemistry, 2013, 15, 1485.	4.6	87
113	Boosting CO ₂ Electroreduction over a Cadmium Singleâ€Atom Catalyst by Tuning of the Axial Coordination Structure. Angewandte Chemie - International Edition, 2021, 60, 20803-20810.	7.2	86
114	Catalytic hydroxylation of benzene to phenol with hydrogen peroxide using catalysts based on molecular sieves. New Journal of Chemistry, 2013, 37, 1654.	1.4	85
115	Hollow Metal–Organicâ€Frameworkâ€Mediated Inâ€Situ Architecture of Copper Dendrites for Enhanced CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2020, 59, 8896-8901.	7.2	85
116	Ru–Zn supported on hydroxyapatite as an effective catalyst for partial hydrogenation of benzene. Green Chemistry, 2013, 15, 152-159.	4.6	84
117	In situ dual doping for constructing efficient CO2-to-methanol electrocatalysts. Nature Communications, 2022, 13, 1965.	5.8	84
118	Microcalorimetry Study of Interaction between Ionic Surfactants and Hydrophobically Modified Polymers in Aqueous Solutions. Langmuir, 1997, 13, 3119-3123.	1.6	83
119	Conductivities and Viscosities of the Ionic Liquid [bmim][PF6] + Water + Ethanol and [bmim][PF6] + Water + Acetone Ternary Mixtures. Journal of Chemical & Engineering Data, 2003, 48, 1315-1317.	1.0	83
120	Highly Efficient Nanocatalysts Supported on Hollow Polymer Nanospheres:  Synthesis, Characterization, and Applications. Journal of Physical Chemistry C, 2008, 112, 774-780.	1.5	83
121	Novel microemulsions: ionic liquid-in-ionic liquid. Chemical Communications, 2007, , 2497.	2.2	82
122	Shape and Size Controlled Synthesis of MOF Nanocrystals with the Assistance of Ionic Liquid Mircoemulsions. Langmuir, 2013, 29, 13168-13174.	1.6	82
123	Fabrication and characterization of magnetic carbon nanotube composites. Journal of Materials Chemistry, 2005, 15, 4497.	6.7	81
124	Ionic Liquid-Assisted Immobilization of Rh on Attapulgite and Its Application in Cyclohexene Hydrogenation. Journal of Physical Chemistry C, 2007, 111, 2185-2190.	1.5	79
125	Highly efficient synthesis of cyclic carbonates from CO2 and epoxides catalyzed by KI/lecithin. Catalysis Today, 2012, 183, 130-135.	2.2	79
126	Electrosynthesis of a Defective Indium Selenide with 3Dâ€Structure on a Substrate for Tunable CO ₂ Electroreduction to Syngas. Angewandte Chemie - International Edition, 2020, 59, 2354-2359.	7.2	79

#	Article	IF	CITATIONS
127	High-internal-phase emulsions stabilized by metal-organic frameworks and derivation of ultralight metal-organic aerogels. Scientific Reports, 2016, 6, 21401.	1.6	78
128	The highly selective aerobic oxidation of cyclohexane to cyclohexanone and cyclohexanol over V ₂ O ₅ @TiO ₂ under simulated solar light irradiation. Green Chemistry, 2017, 19, 311-318.	4.6	78
129	Solubility of Ls-36 and Ls-45 Surfactants in Supercritical CO2and Loading Water in the CO2/Water/Surfactant Systems. Langmuir, 2002, 18, 3086-3089.	1.6	76
130	Supercritical or Compressed CO ₂ as a Stimulus for Tuning Surfactant Aggregations. Accounts of Chemical Research, 2013, 46, 425-433.	7.6	76
131	Zn-Nx sites on N-doped carbon for aerobic oxidative cleavage and esterification of C(CO)-C bonds. Nature Communications, 2021, 12, 4823.	5.8	76
132	Large-scale production of self-assembled SnO2 nanospheres and their application in high-performance chemiluminescence sensors for hydrogen sulfide gas. Journal of Materials Chemistry, 2007, 17, 1791.	6.7	75
133	Copper-catalyzed <i>N</i> -formylation of amines with CO ₂ under ambient conditions. RSC Advances, 2016, 6, 32370-32373.	1.7	75
134	Synthesis of formamides containing unsaturated groups by N-formylation of amines using CO ₂ with H ₂ . Green Chemistry, 2017, 19, 196-201.	4.6	75
135	Synthesis of mesoporous SrCO3 spheres and hollow CaCO3 spheres in room-temperature ionic liquid. Microporous and Mesoporous Materials, 2005, 83, 145-149.	2.2	74
136	Quantitative Electro-Reduction of CO ₂ to Liquid Fuel over Electro-Synthesized Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 17384-17392.	6.6	73
137	Polypropylene/Silica Nanocomposites Prepared by in-Situ Solâ^'Gel Reaction with the Aid of CO2. Macromolecules, 2005, 38, 5617-5624.	2.2	72
138	Highly selective hydrogenation of CO ₂ into C ₂₊ alcohols by homogeneous catalysis. Chemical Science, 2015, 6, 5685-5689.	3.7	72
139	Selective Utilization of the Methoxy Group in Lignin to Produce Acetic Acid. Angewandte Chemie - International Edition, 2017, 56, 14868-14872.	7.2	72
140	Ambient-Temperature Synthesis of Primary Amines via Reductive Amination of Carbonyl Compounds. ACS Catalysis, 2020, 10, 7763-7772.	5.5	72
141	One-step synthesis of ultrathin α-Co(OH) ₂ nanomeshes and their high electrocatalytic activity toward the oxygen evolution reaction. Chemical Communications, 2018, 54, 4045-4048.	2.2	71
142	Synthesis and characterization of TiO2–montmorillonite nanocomposites and their application for removal of methylene blue. Journal of Materials Chemistry, 2006, 16, 579-584.	6.7	70
143	Natural Product Glycine Betaine as an Efficient Catalyst for Transformation of CO ₂ with Amines to Synthesize <i>N</i> -Substituted Compounds. ACS Sustainable Chemistry and Engineering, 2017, 5, 7086-7092.	3.2	70
144	Electroreduction of CO2 in Ionic Liquid-Based Electrolytes. Innovation(China), 2020, 1, 100016.	5.2	70

#	Article	IF	CITATIONS
145	Free radical reaction promoted by ionic liquid: a route for metal-free oxidation depolymerization of lignin model compound and lignin. Chemical Communications, 2015, 51, 4028-4031.	2.2	69
146	Synthesis of Supported Ultrafine Nonâ€noble Subnanometerâ€Scale Metal Particles Derived from Metal–Organic Frameworks as Highly Efficient Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2016, 55, 1080-1084.	7.2	69
147	Wacker oxidation of 1-hexene in 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), supercritical (SC) CO2, and SC CO2/[bmim][PF6] mixed solvent. New Journal of Chemistry, 2002, 26, 1246-1248.	1.4	68
148	Porous Hafnium Phosphonate: Novel Heterogeneous Catalyst for Conversion of Levulinic Acid and Esters into Î ³ -Valerolactone. ACS Sustainable Chemistry and Engineering, 2016, 4, 6231-6236.	3.2	68
149	Efficient electroreduction of CO ₂ to C2 products over B-doped oxide-derived copper. Green Chemistry, 2018, 20, 4579-4583.	4.6	68
150	Selective catalytic transformation of lignin with guaiacol as the only liquid product. Chemical Science, 2020, 11, 1347-1352.	3.7	68
151	Facile one-pot synthesis of VxOy@C catalysts using sucrose for the direct hydroxylation of benzene to phenol. Green Chemistry, 2013, 15, 1150.	4.6	67
152	Synthesizing Ag Nanoparticles of Small Size on a Hierarchical Porosity Support for the Carboxylative Cyclization of Propargyl Alcohols with CO ₂ under Ambient Conditions. Chemistry - A European Journal, 2015, 21, 15924-15928.	1.7	66
153	Fabrication of 2D metal–organic framework nanosheets with tailorable thickness using bio-based surfactants and their application in catalysis. Green Chemistry, 2019, 21, 54-58.	4.6	66
154	Highly efficient hydrogenation of levulinic acid into 2-methyltetrahydrofuran over Ni–Cu/Al ₂ O ₃ –ZrO ₂ bifunctional catalysts. Green Chemistry, 2019, 21, 606-613.	4.6	66
155	Metal–organic framework-derived indium–copper bimetallic oxide catalysts for selective aqueous electroreduction of CO ₂ . Green Chemistry, 2019, 21, 503-508.	4.6	66
156	Seleniumâ€Doped Hierarchically Porous Carbon Nanosheets as an Efficient Metalâ€Free Electrocatalyst for CO ₂ Reduction. Advanced Functional Materials, 2020, 30, 1906194.	7.8	66
157	Productâ€oriented Direct Cleavage of Chemical Linkages in Lignin. ChemSusChem, 2020, 13, 4367-4381.	3.6	66
158	Recovery of Nanoparticles from (EO)8(PO)50(EO)8/p-Xylene/H2O Microemulsions by Tuning the Temperature. Langmuir, 2003, 19, 8611-8614.	1.6	65
159	Nonaqueous microemulsion-containing ionic liquid [bmim][PF6] as polar microenvironment. Colloid and Polymer Science, 2005, 283, 1371-1375.	1.0	65
160	The dispersion of carbon nanotubes in water with the aid of very small amounts of ionic liquid. Chemical Communications, 2009, , 1897.	2.2	65
161	Very efficient conversion of glucose to 5-hydroxymethylfurfural in DBU-based ionic liquids with benzenesulfonate anion. Green Chemistry, 2014, 16, 3935-3941.	4.6	65
162	A green and effective method to synthesize ionic liquids: supercritical CO2 route. Green Chemistry, 2005, 7, 701.	4.6	64

#	Article	IF	CITATIONS
163	A Novel Method to Immobilize Ru Nanoparticles on SBA-15 Firmly by Ionic Liquid and Hydrogenation of Arene. Catalysis Letters, 2005, 103, 59-62.	1.4	63
164	Control Synthesis of Silver Nanosheets, Chainlike Sheets, and Microwires via a Simple Solventâ^Thermal Method. Crystal Growth and Design, 2007, 7, 900-904.	1.4	63
165	Seeding Growth of Pd/Au Bimetallic Nanoparticles on Highly Cross-Linked Polymer Microspheres with Ionic Liquid and Solvent-Free Hydrogenation. Journal of Physical Chemistry C, 2010, 114, 3396-3400.	1.5	63
166	Transformation of alcohols to esters promoted by hydrogen bonds using oxygen as the oxidant under metal-free conditions. Science Advances, 2018, 4, eaas9319.	4.7	63
167	Study of ethylene glycol/TX-100/ionic liquid microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302, 211-215.	2.3	62
168	Synthesis of dimethylformamide from CO2, H2 and dimethylamine over Cu/ZnO. Chemical Communications, 2010, 46, 5770.	2.2	62
169	Highly selective oxidation of cyclohexene to 2-cyclohexene-1-one in water using molecular oxygen over Fe–Co–g-C ₃ N ₄ . Catalysis Science and Technology, 2016, 6, 193-200.	2.1	62
170	Visible-light-driven conversion of CO ₂ from air to CO using an ionic liquid and a conjugated polymer. Green Chemistry, 2017, 19, 5777-5781.	4.6	62
171	Electro-reduction of carbon dioxide at low over-potential at a metal–organic framework decorated cathode. Nature Communications, 2020, 11, 5464.	5.8	62
172	Selective valorization of lignin to phenol by direct transformation of C _{sp2} –C _{sp3} and C–O bonds. Science Advances, 2020, 6, .	4.7	62
173	Micropolarity and aggregation behavior in ionic liquid+organic solvent solutions. Fluid Phase Equilibria, 2006, 248, 211-216.	1.4	60
174	Effect of CO2 on conversion of inulin to 5-hydroxymethylfurfural and propylene oxide to 1,2-propanediol in water. Green Chemistry, 2010, 12, 1215.	4.6	60
175	Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene. Nano Research, 2020, 13, 768-774.	5.8	60
176	The physicochemical properties of some imidazolium-based ionic liquids and their binary mixtures. Science China Chemistry, 2012, 55, 1509-1518.	4.2	59
177	Mo–Bi–Cd Ternary Metal Chalcogenides: Highly Efficient Photocatalyst for CO ₂ Reduction to Formic Acid Under Visible Light. ACS Sustainable Chemistry and Engineering, 2018, 6, 5754-5759.	3.2	58
178	Ru/hydroxyapatite as a dual-functional catalyst for efficient transfer hydrogenolytic cleavage of aromatic ether bonds without additional bases. Green Chemistry, 2019, 21, 5073-5079.	4.6	58
179	Halogen-free fixation of carbon dioxide into cyclic carbonates <i>via</i> bifunctional organocatalysts. Green Chemistry, 2021, 23, 1147-1153.	4.6	58
180	Ionic liquid-based electrolytes for CO2 electroreduction and CO2 electroorganic transformation. National Science Review, 2022, 9, nwab022.	4.6	58

#	Article	IF	CITATIONS
181	Preparation of silica microrods with nano-sized pores in ionic liquid microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 286, 117-120.	2.3	57
182	Ru catalyst supported on bentonite for partial hydrogenation of benzene to cyclohexene. Journal of Molecular Catalysis A, 2012, 355, 174-179.	4.8	57
183	Green chemistry: a tool for the sustainable development of the chemical industry. National Science Review, 2015, 2, 255-256.	4.6	57
184	Nitrogen Dioxide Catalyzed Aerobic Oxidative Cleavage of C(OH)–C Bonds of Secondary Alcohols to Produce Acids. Angewandte Chemie - International Edition, 2019, 58, 17393-17398.	7.2	57
185	Recent advances in the coupling of CO2 and epoxides into cyclic carbonates under halogen-free condition. Green Chemical Engineering, 2020, 1, 82-93.	3.3	57
186	Efficient Reduction of CO ₂ into Formic Acid on a Lead or Tin Electrode using an Ionic Liquid Catholyte Mixture. Angewandte Chemie, 2016, 128, 9158-9162.	1.6	56
187	Highly efficient electrochemical reduction of CO ₂ into formic acid over lead dioxide in an ionic liquid–catholyte mixture. Green Chemistry, 2018, 20, 1765-1769.	4.6	56
188	Highly Efficient Electroreduction of CO ₂ to Methanol on Palladium–Copper Bimetallic Aerogels. Angewandte Chemie, 2018, 130, 14345-14349.	1.6	56
189	Ionic-Liquid-Catalyzed Approaches under Metal-Free Conditions. Accounts of Chemical Research, 2021, 54, 3172-3190.	7.6	56
190	Tri-phase behavior of ionic liquid–water–CO2system at elevated pressures. Physical Chemistry Chemical Physics, 2004, 6, 5051-5055.	1.3	55
191	Study on guanidine-based task-specific ionic liquids as catalysts for direct aldol reactions without solvent. New Journal of Chemistry, 2006, 30, 736.	1.4	55
192	High-efficiency exfoliation of layered materials into 2D nanosheets in switchable CO2/Surfactant/H2O system. Scientific Reports, 2015, 5, 16764.	1.6	55
193	Molybdenum–Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol. Angewandte Chemie, 2016, 128, 6883-6887.	1.6	55
194	Ionic liquid [OMIm][OAc] directly inducing oxidation cleavage of the β-O-4 bond of lignin model compounds. Chemical Communications, 2017, 53, 8850-8853.	2.2	55
195	Selective hydrogenation of unsaturated aldehydes over Pt nanoparticles promoted by the cooperation of steric and electronic effects. Chemical Communications, 2018, 54, 908-911.	2.2	55
196	Conversion of levulinic acid to γ-valerolactone over ultra-thin TiO ₂ nanosheets decorated with ultrasmall Ru nanoparticle catalysts under mild conditions. Green Chemistry, 2019, 21, 770-774.	4.6	55
197	A route to convert CO ₂ : synthesis of 3,4,5-trisubstituted oxazolones. Green Chemistry, 2015, 17, 1219-1225.	4.6	54
198	Bromide promoted hydrogenation of CO ₂ to higher alcohols using Ru–Co homogeneous catalyst. Chemical Science, 2016, 7, 5200-5205.	3.7	54

#	Article	IF	CITATIONS
199	An Efficient and General Method for Formylation of Aryl Bromides with CO ₂ and Poly(methylhydrosiloxane). Chemistry - A European Journal, 2016, 22, 1097-1102.	1.7	54
200	One-pot sequential oxidation and aldol-condensation reactions of veratryl alcohol catalyzed by the Ru@ZIF-8 + CuO/basic ionic liquid system. Green Chemistry, 2014, 16, 600-604.	4.6	52
201	CO ₂ Hydrogenation to Formate Catalyzed by Ru Coordinated with a N,P-Containing Polymer. ACS Catalysis, 2020, 10, 8557-8566.	5.5	52
202	Aerobic Oxidative Cleavage and Esterification of C(OH)–C Bonds. CheM, 2020, 6, 3288-3296.	5.8	51
203	CO2 controls the oriented growth of metal-organic framework with highly accessible active sites. Nature Communications, 2020, 11, 1431.	5.8	51
204	A new method to recover the nanoparticles from reverse micelles: recovery of ZnS nanoparticles synthesized in reverse micelles by compressed CO2. Chemical Communications, 2001, , 2724-2725.	2.2	50
205	Synthesis of dimethyl carbonate using CO2 and methanol: enhancing the conversion by controlling the phase behavior. Green Chemistry, 2002, 4, 467-471.	4.6	50
206	Hollow metal–organic framework polyhedra synthesized by a CO2–ionic liquid interfacial templating route. Journal of Colloid and Interface Science, 2014, 416, 198-204.	5.0	50
207	SPATA2 regulates the activation of RIPK1 by modulating linear ubiquitination. Genes and Development, 2017, 31, 1162-1176.	2.7	50
208	Insights into Carbon Dioxide Electroreduction in Ionic Liquids: Carbon Dioxide Activation and Selectivity Tailored by Ionic Microhabitat. ChemSusChem, 2018, 11, 3191-3197.	3.6	50
209	Effect of dissolved CO2 on the conductivity of the ionic liquid [bmim][PF6]. New Journal of Chemistry, 2003, 27, 333-336.	1.4	49
210	A study of tri-phasic behavior of ionic liquid–methanol–CO2systems at elevated pressures. Physical Chemistry Chemical Physics, 2004, 6, 2352-2357.	1.3	49
211	Assembling Metal–Organic Frameworks in Ionic Liquids and Supercritical CO ₂ . Chemistry - an Asian Journal, 2016, 11, 2610-2619.	1.7	49
212	Cellular graphene aerogel combines ultralow weight and high mechanical strength: A highly efficient reactor for catalytic hydrogenation. Scientific Reports, 2016, 6, 25830.	1.6	49
213	A strategy to control the grain boundary density and Cu ⁺ /Cu ⁰ ratio of Cu-based catalysts for efficient electroreduction of CO ₂ to C2 products. Green Chemistry, 2020, 22, 1572-1576.	4.6	49
214	Electrochemical reduction of CO2 to CO using graphene oxide/carbon nanotube electrode in ionic liquid/acetonitrile system. Science China Chemistry, 2016, 59, 551-556.	4.2	48
215	Direct Zâ€Scheme Heterojunction of SnS ₂ /Sulfurâ€Bridged Covalent Triazine Frameworks for Visibleâ€Lightâ€Driven CO ₂ Photoreduction. ChemSusChem, 2020, 13, 6278-6283.	3.6	48
216	Synthesis of C ₂₊ Chemicals from CO ₂ and H ₂ via C–C Bond Formation. Accounts of Chemical Research, 2021, 54, 2467-2476.	7.6	48

#	Article	IF	CITATIONS
217	One-pot conversion of carbohydrates into gamma-valerolactone catalyzed by highly cross-linked ionic liquid polymer and Co/TiO ₂ . RSC Advances, 2015, 5, 15267-15273.	1.7	47
218	The ionic liquid microphase enhances the catalytic activity of Pd nanoparticles supported by a metal–organic framework. Green Chemistry, 2015, 17, 4178-4182.	4.6	47
219	Hierarchical Metal–Polymer Hybrids for Enhanced CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2021, 60, 10977-10982.	7.2	47
220	Knoevenagel Condensation Catalyzed by 1,1,3,3â€Tetramethylguanidium Lactate. Synthetic Communications, 2006, 36, 3305-3317.	1.1	46
221	Aerobic oxidation of benzyl alcohol in supercritical CO2 catalyzed by perruthenate immobilized on polymer supported ionic liquid. Green Chemistry, 2008, 10, 278.	4.6	46
222	Shape controlled synthesis of palladium nanocrystals by combination of oleylamine and alkylammonium alkylcarbamate and their catalytic activity. Chemical Communications, 2010, 46, 8552.	2.2	46
223	Pickering emulsions stabilized by a metal–organic framework (MOF) and graphene oxide (GO) for producing MOF/GO composites. Soft Matter, 2017, 13, 7365-7370.	1.2	46
224	Levulinic acid hydrogenation to Î ³ -valerolactone over single Ru atoms on a TiO ₂ @nitrogen doped carbon support. Green Chemistry, 2021, 23, 1621-1627.	4.6	46
225	The partial hydrogenation of benzene to cyclohexene over Ru–Cu catalyst supported on ZnO. Journal of Molecular Catalysis A, 2011, 341, 35-41.	4.8	45
226	Enhanced CO ₂ electroreduction <i>via</i> interaction of dangling S bonds and Co sites in cobalt phthalocyanine/ZnIn ₂ S ₄ hybrids. Chemical Science, 2019, 10, 1659-1663.	3.7	45
227	Efficient synthesis of acetic acid via Rh catalyzed methanol hydrocarboxylation with CO ₂ and H ₂ under milder conditions. Green Chemistry, 2017, 19, 3558-3565.	4.6	44
228	Anchoring Ionic Liquid in Copper Electrocatalyst for Improving CO ₂ Conversion to Ethylene. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44
229	Highly selective benzene hydrogenation to cyclohexene over supported Ru catalyst without additives. Green Chemistry, 2011, 13, 1106.	4.6	43
230	Highly efficient hydrogenation of carbon dioxide to methyl formate over supported gold catalysts. Green Chemistry, 2015, 17, 1467-1472.	4.6	43
231	Metal-Oxide-Catalyzed Efficient Conversion of Cellulose to Oxalic Acid in Alkaline Solution under Low Oxygen Pressure. ACS Sustainable Chemistry and Engineering, 2016, 4, 305-311.	3.2	43
232	Enhancing electroreduction of CO ₂ over Bi ₂ WO ₆ nanosheets by oxygen vacancies. Green Chemistry, 2019, 21, 2589-2593.	4.6	43
233	Transformation of CO ₂ into α-Alkylidene Cyclic Carbonates at Room Temperature Cocatalyzed by Cul and Ionic Liquid with Biomass-Derived Levulinate Anion. ACS Sustainable Chemistry and Engineering, 2019, 7, 5614-5619.	3.2	43
234	Hydrogenâ€Bonding Catalyzed Ringâ€Closing Câ^'O/Câ^'O Metathesis of Aliphatic Ethers over Ionic Liquid under Metalâ€Free Conditions. Angewandte Chemie - International Edition, 2020, 59, 11850-11855.	7.2	43

#	Article	IF	CITATIONS
235	Boosting the Productivity of Electrochemical CO ₂ Reduction to Multiâ€Carbon Products by Enhancing CO ₂ Diffusion through a Porous Organic Cage. Angewandte Chemie - International Edition, 2022, 61, .	7.2	43
236	Carbon Dioxide in Ionic Liquid Microemulsions. Angewandte Chemie - International Edition, 2011, 50, 9911-9915.	7.2	42
237	Light-driven integration of the reduction of nitrobenzene to aniline and the transformation of glycerol into valuable chemicals in water. RSC Advances, 2015, 5, 36347-36352.	1.7	42
238	Synthesis of Asymmetrical Organic Carbonates using CO ₂ as a Feedstock in AgCl/Ionic Liquid System at Ambient Conditions. ChemSusChem, 2017, 10, 1292-1297.	3.6	42
239	MoP Nanoparticles Supported on Indiumâ€Doped Porous Carbon: Outstanding Catalysts for Highly Efficient CO ₂ Electroreduction. Angewandte Chemie, 2018, 130, 2451-2455.	1.6	42
240	Bipyridyl-Containing Cadmium–Organic Frameworks for Efficient Photocatalytic Oxidation of Benzylamine. ACS Applied Materials & Interfaces, 2019, 11, 30953-30958.	4.0	42
241	Vapor pressure of dimethyl sulfoxide and water binary system. Journal of Solution Chemistry, 1995, 24, 1183-1189.	0.6	41
242	Phase Separation of the Reaction System Induced by CO2and Conversion Enhancement for the Esterification of Acetic Acid with Ethanol in Ionic Liquid. Journal of Physical Chemistry B, 2005, 109, 16176-16179.	1.2	41
243	CO2 capture by hydrocarbonsurfactant liquids. Chemical Communications, 2011, 47, 1033-1035.	2.2	41
244	Nitrogen-carbon layer coated nickel nanoparticles for efficient electrocatalytic reduction of carbon dioxide. Nano Research, 2019, 12, 1167-1172.	5.8	41
245	Highly efficient Meerwein–Ponndorf–Verley reductions over a robust zirconium-organoboronic acid hybrid. Green Chemistry, 2021, 23, 1259-1265.	4.6	41
246	An efficient palladium catalyst on bentonite for Suzuki–Miyaura reaction at room temperature. Green Chemistry, 2013, 15, 3396.	4.6	40
247	Using the hydrogen and oxygen in water directly for hydrogenation reactions and glucose oxidation by photocatalysis. Chemical Science, 2016, 7, 463-468.	3.7	40
248	The <i>in situ</i> study of surface species and structures of oxide-derived copper catalysts for electrochemical CO ₂ reduction. Chemical Science, 2021, 12, 5938-5943.	3.7	40
249	Efficient Hydrogenation of CO ₂ to Methanol over Supported Subnanometer Gold Catalysts at Low Temperature. ChemCatChem, 2017, 9, 3691-3696.	1.8	40
250	Preparation of Ru/Graphene using Glucose as Carbon Source and Hydrogenation of Levulinic Acid to γâ€Valerolactone. Chemistry - an Asian Journal, 2016, 11, 2792-2796.	1.7	39
251	Converting Metal–Organic Framework Particles from Hydrophilic to Hydrophobic by an Interfacial Assembling Route. Langmuir, 2017, 33, 12427-12433	1.6	39
252	Metal–Organic Framework-Stabilized CO ₂ /Water Interfacial Route for Photocatalytic CO ₂ /Sub>2 Conversion. ACS Applied Materials & amp; Interfaces, 2017, 9, 41594-41598.	4.0	39

#	Article	IF	CITATIONS
253	Self-supported hydrogenolysis of aromatic ethers to arenes. Science Advances, 2019, 5, eaax6839.	4.7	39
254	Boosting CO ₂ Electroreduction on N,Pâ€Coâ€doped Carbon Aerogels. Angewandte Chemie, 2020, 132, 11216-11222.	1.6	39
255	Efficient electrocatalytic reduction of carbon dioxide to ethylene on copper–antimony bimetallic alloy catalyst. Chinese Journal of Catalysis, 2020, 41, 1091-1098.	6.9	39
256	Boron-doped CuO nanobundles for electroreduction of carbon dioxide to ethylene. Green Chemistry, 2020, 22, 2750-2754.	4.6	39
257	Electrochemical Strategy for the Simultaneous Production of Cyclohexanone and Benzoquinone by the Reaction of Phenol and Water. Journal of the American Chemical Society, 2022, 144, 1556-1571.	6.6	39
258	Pd(ii) immobilized on mesoporous silica by N-heterocyclic carbene ionic liquids and catalysis for hydrogenation. Physical Chemistry Chemical Physics, 2011, 13, 2062.	1.3	38
259	High internal ionic liquid phase emulsion stabilized by metal–organic frameworks. Soft Matter, 2016, 12, 8841-8846.	1.2	38
260	Roomâ€Temperature Synthesis of Covalent Organic Framework (COF‣ZU1) Nanobars in CO ₂ /Water Solvent. ChemSusChem, 2018, 11, 3576-3580.	3.6	38
261	Liquid fuel synthesis via CO2 hydrogenation by coupling homogeneous and heterogeneous catalysis. CheM, 2021, 7, 726-737.	5.8	38
262	Ionic Liquid Catalytic Systems and Chemical Reactions. Current Organic Chemistry, 2009, 13, 1278-1299.	0.9	37
263	Macro―and Mesoporous Polymers Synthesized by a CO ₂ â€inâ€ionic Liquid Emulsionâ€Templating Route. Angewandte Chemie - International Edition, 2013, 52, 1792-1795.	7.2	37
264	A Pd–Cu ₂ O nanocomposite as an effective synergistic catalyst for selective semi-hydrogenation of the terminal alkynes only. Chemical Communications, 2016, 52, 3627-3630.	2.2	37
265	Naturally occurring gallic acid derived multifunctional porous polymers for highly efficient CO ₂ conversion and I ₂ capture. Green Chemistry, 2018, 20, 4655-4661.	4.6	37
266	Highly Mesoporous Ru-MIL-125-NH ₂ Produced by Supercritical Fluid for Efficient Photocatalytic Hydrogen Production. ACS Applied Energy Materials, 2019, 2, 4964-4970.	2.5	37
267	A fully heterogeneous catalyst Br-LDH for the cycloaddition reactions of CO ₂ with epoxides. Chemical Communications, 2019, 55, 6942-6945.	2.2	37
268	Supercritical CO2 produces the visible-light-responsive TiO2/COF heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution. Nano Research, 2020, 13, 983-988.	5.8	37
269	Selective electrochemical reduction of carbon dioxide to ethanol <i>via</i> a relay catalytic platform. Chemical Science, 2020, 11, 5098-5104.	3.7	37
270	Interactions between Sodium Dodecyl Sulfate and Hydrophobically Modified Poly(acrylamide)s Studied by Electron Spin Resonance and Transmission Electron Microscopy. Langmuir, 1998, 14, 2050-2054.	1.6	36

#	Article	IF	CITATIONS
271	Shape and Size Controlled Synthesis of Anatase Nanocrystals with the Assistance of Ionic Liquid. Langmuir, 2010, 26, 5129-5134.	1.6	36
272	Cu and Boron Doped Carbon Nitride for Highly Selective Oxidation of Toluene to Benzaldehyde. Molecules, 2015, 20, 12686-12697.	1.7	36
273	Metal–Organic Framework for Emulsifying Carbon Dioxide and Water. Angewandte Chemie - International Edition, 2016, 55, 11372-11376.	7.2	36
274	Synthesis of ethanol <i>via</i> a reaction of dimethyl ether with CO ₂ and H ₂ . Green Chemistry, 2018, 20, 206-213.	4.6	36
275	An electrocatalytic route for transformation of biomass-derived furfural into 5-hydroxy-2(5 <i>H</i>)-furanone. Chemical Science, 2019, 10, 4692-4698.	3.7	36
276	Synthesis of higher carboxylic acids from ethers, CO2 and H2. Nature Communications, 2019, 10, 5395.	5.8	36
277	Composites Prepared by the Polymerization of Styrene within Supercritical CO2-Swollen Polypropylene. Chemistry of Materials, 2002, 14, 4619-4623.	3.2	35
278	High-internal-ionic liquid-phase emulsions. Chemical Communications, 2012, 48, 994-996.	2.2	35
279	"Happy silver anniversary― Green Chemistry at 25. Green Chemistry, 2016, 18, 12-13.	4.6	35
280	Boosting nitrate electroreduction to ammonia on NbO _{<i>x</i>} <i>via</i> constructing oxygen vacancies. Green Chemistry, 2022, 24, 1090-1095.	4.6	35
281	Modification of isotactic polypropylene film by grafting of acrylic acid using supercritical CO2 as a swelling agent. Journal of Materials Chemistry, 2002, 12, 3565-3569.	6.7	34
282	Choline hydroxide promoted chemical fixation of CO ₂ to quinazoline-2,4(1H,3H)-diones in water. RSC Advances, 2014, 4, 50993-50997.	1.7	34
283	Catalysis of photooxidation reactions through transformation between Cu ²⁺ and Cu ⁺ in TiO ₂ –Cu–MOF composites. Chemical Communications, 2018, 54, 5984-5987.	2.2	34
284	Selective hydrogenation of aromatic furfurals into aliphatic tetrahydrofurfural derivatives. Green Chemistry, 2020, 22, 4937-4942.	4.6	34
285	Single atom and defect engineering of CuO for efficient electrochemical reduction of CO ₂ to C ₂ H ₄ . SmartMat, 2022, 3, 194-205.	6.4	34
286	Selective electroreduction of carbon dioxide to formic acid on electrodeposited SnO2@N-doped porous carbon catalysts. Science China Chemistry, 2018, 61, 228-235.	4.2	33
287	Selective utilization of methoxy groups in lignin for <i>N</i> -methylation reaction of anilines. Chemical Science, 2019, 10, 1082-1088.	3.7	33
288	Hydrogenolysis of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran under Mild Conditions without Any Additive. ACS Sustainable Chemistry and Engineering, 2019, 7, 5711-5716.	3.2	33

#	Article	IF	CITATIONS
289	Highly Selective CO ₂ Electroreduction to CO on Cu–Co Bimetallic Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 12561-12567.	3.2	33
290	Measurement of critical points of the methylcyclohexane (MCH)–H2–CO2 system in the CO2-rich region. Fluid Phase Equilibria, 2001, 179, 131-138.	1.4	32
291	Selective oxidation of cyclohexane in compressed CO2 and in liquid solvents over MnAPO-5 molecular sieve. Green Chemistry, 2002, 4, 426-430.	4.6	32
292	Nanosized Poly(ethylene glycol) Domains within Reverse Micelles Formed in CO ₂ . Angewandte Chemie - International Edition, 2012, 51, 12325-12329.	7.2	32
293	Hydrogenolysis of Glycerol to 1,2â€Propanediol over Ru–Cu Bimetals Supported on Different Supports. Clean - Soil, Air, Water, 2012, 40, 318-324.	0.7	32
294	Mesoporous inorganic salts with crystal defects: unusual catalysts and catalyst supports. Chemical Science, 2015, 6, 1668-1675.	3.7	32
295	Simultaneous and selective transformation of glucose to arabinose and nitrosobenzene to azoxybenzene driven by visible-light. Green Chemistry, 2016, 18, 3852-3857.	4.6	32
296	Nanoporous Cu/Ni oxide composites: efficient catalysts for electrochemical reduction of CO ₂ in aqueous electrolytes. Green Chemistry, 2018, 20, 3705-3710.	4.6	32
297	Cu _x Ni _y alloy nanoparticles embedded in a nitrogen–carbon network for efficient conversion of carbon dioxide. Chemical Science, 2019, 10, 4491-4496.	3.7	32
298	Electrosynthesis of a Defective Indium Selenide with 3Dâ€Structure on a Substrate for Tunable CO ₂ Electroreduction to Syngas. Angewandte Chemie, 2020, 132, 2374-2379.	1.6	32
299	Solid surface frustrated Lewis pair constructed on layered AlOOH for hydrogenation reaction. Nature Communications, 2022, 13, 2320.	5.8	32
300	Simultaneous CO ₂ Reduction and 5-Hydroxymethylfurfural Oxidation to Value-Added Products by Electrocatalysis. ACS Sustainable Chemistry and Engineering, 2022, 10, 8043-8050.	3.2	32
301	Reversible Switching of Lamellar Liquid Crystals into Micellar Solutions using CO ₂ . Angewandte Chemie - International Edition, 2008, 47, 10119-10123.	7.2	31
302	Enhancing the selectivity of the hydrogenation of naphthalene to tetralin by high temperature water. Green Chemistry, 2009, 11, 1061.	4.6	31
303	Acceleration of Suzuki coupling reactions by abundant and non-toxic salt particles. Green Chemistry, 2014, 16, 1198-1201.	4.6	31
304	Synthesis of Hierarchical Porous Metals Using Ionicâ€Liquidâ€Based Media as Solvent and Template. Angewandte Chemie - International Edition, 2017, 56, 12683-12686.	7.2	31
305	Basic ionic liquids promoted chemical transformation of CO2 to organic carbonates. Science China Chemistry, 2018, 61, 1486-1493.	4.2	31
306	Renewable and Biocompatible Lecithin as an Efficient Organocatalyst for Reductive Conversion of CO ₂ with Amines to Formamides and Methylamines. ACS Sustainable Chemistry and Engineering, 2018, 6, 11228-11234.	3.2	31

#	Article	IF	CITATIONS
307	Hydrothermal synthesis of long-chain hydrocarbons up to C ₂₄ with NaHCO ₃ -assisted stabilizing cobalt. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	31
308	Bright, Magnetic NIR-II Quantum Dot Probe for Sensitive Dual-Modality Imaging and Intensive Combination Therapy of Cancer. ACS Nano, 2022, 16, 8076-8094.	7.3	31
309	Equilibrium Constant and Enthalpy for the Hydrogen Bonding of Acetic Acid with Tetrahydrofuran in Supercritical CO2. Journal of Physical Chemistry A, 1999, 103, 5240-5245.	1.1	30
310	Cross-linked polymer coated Pd nanocatalysts on SiO2 support: very selective and stable catalysts for hydrogenation in supercritical CO2. Green Chemistry, 2009, 11, 798.	4.6	30
311	Efficient SO2 capture by amine functionalized PEG. Physical Chemistry Chemical Physics, 2013, 15, 18123.	1.3	30
312	Electrodeposited Cu–Pd bimetallic catalysts for the selective electroreduction of CO ₂ to ethylene. Green Chemistry, 2020, 22, 7560-7565.	4.6	30
313	Low temperature methanation of CO ₂ over an amorphous cobalt-based catalyst. Chemical Science, 2021, 12, 3937-3943.	3.7	30
314	Biomass: Renewable carbon resource for chemical and energy industry. Innovation(China), 2022, 3, 100184.	5.2	30
315	Effect of Ionic Liquids on the Chemical Equilibrium of Esterification of Carboxylic Acids with Alcohols. Synthetic Communications, 2004, 34, 225-230.	1.1	29
316	Optical and Bioelectrochemical Characterization of Water-Miscible Ionic Liquids Based Composites of Multiwalled Carbon Nanotubes. Electroanalysis, 2006, 18, 1681-1688.	1.5	29
317	Synthesis of icosahedral gold particles by a simple and mild route. Green Chemistry, 2008, 10, 1094.	4.6	29
318	Driving dimethyl carbonate synthesis from CO ₂ and methanol and production of acetylene simultaneously using CaC ₂ . Chemical Communications, 2018, 54, 4410-4412.	2.2	29
319	Improved catalytic performance of Co-MOF-74 by nanostructure construction. Green Chemistry, 2020, 22, 5995-6000.	4.6	29
320	Supercritical CO ₂ -constructed intralayer [Bi ₂ O ₂] ²⁺ structural distortion for enhanced CO ₂ electroreduction. Journal of Materials Chemistry A, 2020, 8, 13320-13327.	5.2	29
321	Improved photocatalytic performance of covalent organic frameworks by nanostructure construction. Chemical Communications, 2020, 56, 4567-4570.	2.2	29
322	Highly Efficient Oxidative Cyanation of Aldehydes to Nitriles over Se,S,Nâ€ <i>tri</i> â€Đoped Hierarchically Porous Carbon Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 21479-21485.	7.2	29
323	Effective synthesis of cyclic carbonates from CO2 and epoxides catalyzed by KI/cucurbit[6]uril. Pure and Applied Chemistry, 2013, 85, 1633-1641.	0.9	28
324	<i>ln situ</i> synthesis of sub-nanometer metal particles on hierarchically porous metal–organic frameworks <i>via</i> interfacial control for highly efficient catalysis. Chemical Science, 2018, 9, 1339-1343.	3.7	28

#	Article	IF	CITATIONS
325	Effect of the coordination environment of Cu in Cu ₂ 0 on the electroreduction of CO ₂ to ethylene. Green Chemistry, 2020, 22, 6340-6344.	4.6	28
326	Electrocatalytic CO ₂ reduction to ethylene over ZrO ₂ /Cu-Cu ₂ O catalysts in aqueous electrolytes. Green Chemistry, 2022, 24, 1527-1533.	4.6	28
327	Ru-Catalyzed methanol homologation with CO ₂ and H ₂ in an ionic liquid. Green Chemistry, 2019, 21, 4152-4158.	4.6	27
328	Fabrication of NH ₂ -MIL-125 nanocrystals for high performance photocatalytic oxidation. Sustainable Energy and Fuels, 2020, 4, 2823-2830.	2.5	27
329	Microwave-Assisted Synthesis of Pt Nanocrystals and Deposition on Carbon Nanotubes in Ionic Liquids. Journal of Nanoscience and Nanotechnology, 2006, 6, 175-179.	0.9	27
330	Preparation of cadmium sulfide/poly(methyl methacrylate) composites by precipitation with compressed CO2. Journal of Applied Polymer Science, 2004, 94, 1643-1648.	1.3	26
331	Synthesis of cyclic carbonates and dimethyl carbonate using CO2 as a building block catalyzed by MOF-5/KI and MOF-5/KI/K2CO3. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2011, 6, 21-30.	0.4	26
332	Cooperative catalysis of Pt/C and acid resin for the production of 2,5-dimethyltetrahydrofuran from biomass derived 2,5-hexanedione under mild conditions. Green Chemistry, 2016, 18, 220-225.	4.6	26
333	Base-Free Aerobic Oxidation of Alcohols over Copper-Based Complex under Ambient Condition. ACS Sustainable Chemistry and Engineering, 2018, 6, 2362-2369.	3.2	26
334	Visible Light-Driven Photoreduction of CO ₂ to CH ₄ over TiO ₂ Using a Multiple-Site Ionic Liquid as an Absorbent and Photosensitizer. ACS Sustainable Chemistry and Engineering, 2020, 8, 9088-9094.	3.2	26
335	Imidazolium cation mediated synthesis of polystyrene–polyaniline core–shell structures. Journal of Materials Chemistry, 2008, 18, 5406.	6.7	25
336	A strategy to overcome the thermodynamic limitation in CO ₂ conversion using ionic liquids and urea. Green Chemistry, 2015, 17, 1633-1639.	4.6	25
337	Selective hydrogenation of furfural on Ru/Al-MIL-53: a comparative study on the effect of aromatic and aliphatic organic linkers. RSC Advances, 2016, 6, 92299-92304.	1.7	25
338	Direct Synthesis of Ultrasmall Ruthenium Nanoparticles on Porous Supports Using Natural Sources for Highly Efficient and Selective Furfural Hydrogenation. ChemCatChem, 2017, 9, 2448-2452.	1.8	25
339	Efficient synthesis of ethanol by methanol homologation using CO ₂ at lower temperature. Green Chemistry, 2019, 21, 589-596.	4.6	25
340	Surface engineering in PbS <i>via</i> partial oxidation: towards an advanced electrocatalyst for reduction of levulinic acid to γ-valerolactone. Chemical Science, 2019, 10, 1754-1759.	3.7	25
341	Metal Ionic Liquids for the Rapid Chemical Fixation of CO ₂ under Ambient Conditions. ChemCatChem, 2020, 12, 1963-1967.	1.8	25
342	The tetramethylguanidine-based ionic liquid-catalyzed synthesis of propylene glycol methyl ether. New Journal of Chemistry, 2010, 34, 2534.	1.4	24

#	Article	IF	CITATIONS
343	Formation of multiple water-in-ionic liquid-in-water emulsions. Journal of Colloid and Interface Science, 2012, 368, 395-399.	5.0	24
344	Catalytic activity of immobilized Ru nanoparticles in a porous metal-organic framework using supercritical fluid. Chinese Journal of Catalysis, 2013, 34, 167-175.	6.9	24
345	V _{<i>x</i>} O _{<i>y</i>} Supported on Hydrophobic Poly(Ionic Liquid)s as an Efficient Catalyst for Direct Hydroxylation of Benzene to Phenol. ChemCatChem, 2015, 7, 3526-3532.	1.8	24
346	Room-temperature synthesis of mesoporous CuO and its catalytic activity for cyclohexene oxidation. RSC Advances, 2015, 5, 67168-67174.	1.7	24
347	Preparation of Copper Phosphate from Naturally Occurring Phytic Acid as an Advanced Catalyst for Oxidation of Aromatic Benzyl Compounds. ACS Sustainable Chemistry and Engineering, 2018, 6, 13670-13675.	3.2	24
348	Ionic liquid-in-ionic liquid nanoemulsions. Chemical Communications, 2012, 48, 10562.	2.2	23
349	The Hydrogenation of Aromatic Compounds under Mild Conditions by Using a Solid Lewis Acid and Supported Palladium Catalyst. ChemCatChem, 2014, 6, 3323-3327.	1.8	23
350	Amphiphile self-assemblies in supercritical CO ₂ and ionic liquids. Soft Matter, 2014, 10, 5861-5868.	1.2	23
351	Synthesis of ethanol from paraformaldehyde, CO ₂ and H ₂ . Green Chemistry, 2017, 19, 4396-4401.	4.6	23
352	Ionic liquids produce heteroatom-doped Pt/TiO2 nanocrystals for efficient photocatalytic hydrogen production. Nano Research, 2019, 12, 1967-1972.	5.8	23
353	Highly Efficient Electroreduction of CO ₂ to C2+ Alcohols on Heterogeneous Dual Active Sites. Angewandte Chemie, 2020, 132, 16601-16606.	1.6	23
354	Control of zeolite microenvironment for propene synthesis from methanol. Nature Communications, 2021, 12, 822.	5.8	23
355	Ambient reductive synthesis of N-heterocyclic compounds over cellulose-derived carbon supported Pt nanocatalyst under H ₂ atmosphere. Green Chemistry, 2020, 22, 3820-3826.	4.6	23
356	Efficient conversion of glucose and cellulose to 5-hydroxymethylfurfural in DBU-based ionic liquids. RSC Advances, 2013, 3, 20085.	1.7	22
357	Free-radical conversion of a lignin model compound catalyzed by Pd/C. Green Chemistry, 2015, 17, 4452-4458.	4.6	22
358	Synthesis of hierarchical mesoporous Prussian blue analogues in ionic liquid/water/MgCl ₂ and application in electrochemical reduction of CO ₂ . Green Chemistry, 2016, 18, 1869-1873.	4.6	22
359	Stepwise degradation of hydroxyl compounds to aldehydes <i>via</i> successive C–C bond cleavage. Chemical Communications, 2019, 55, 925-928.	2.2	22
360	Selective synthesis of formamides, 1,2-bis(N-heterocyclic)ethanes and methylamines from cyclic amines and CO ₂ /H ₂ catalyzed by an ionic liquid–Pd/C system. Chemical Science, 2019, 10, 9822-9828.	3.7	22

#	Article	IF	CITATIONS
361	Aerobic selective oxidation of methylaromatics to benzoic acids over Co@N/Co-CNTs with high loading CoN ₄ species. Journal of Materials Chemistry A, 2019, 7, 27212-27216.	5.2	22
362	Synthesis of ethanol from aryl methyl ether/lignin, CO ₂ and H ₂ . Chemical Science, 2019, 10, 10640-10646.	3.7	22
363	Orderedâ€Mesoporous arbonâ€Confined Pb/PbO Composites: Superior Electrocatalysts for CO ₂ Reduction. ChemSusChem, 2020, 13, 6346-6352.	3.6	22
364	Support Effect of Ru Catalysts for Efficient Conversion of Biomass-Derived 2,5-Hexanedione to Different Products. ACS Catalysis, 2021, 11, 7685-7693.	5.5	22
365	Effect of compressed CO2 on the properties of AOT reverse micelles studied by spectroscopy and phase behavior. Journal of Chemical Physics, 2003, 119, 4873-4878.	1.2	21
366	Synthesis and characterization of polyether structure carbon nitride. Journal of Materials Research, 2004, 19, 1736-1741.	1.2	21
367	Cleaning Using CO2-Based Solvents. Clean - Soil, Air, Water, 2007, 35, 223-229.	0.7	21
368	Water as an additive to enhance the ring opening of naphthalene. Green Chemistry, 2012, 14, 1152.	4.6	21
369	N-methylation of quinolines with CO2 and H2 catalyzed by Ru-triphos complexes. Science China Chemistry, 2017, 60, 927-933.	4.2	21
370	Nitrogen Dioxide Catalyzed Aerobic Oxidative Cleavage of C(OH)–C Bonds of Secondary Alcohols to Produce Acids. Angewandte Chemie, 2019, 131, 17554-17559.	1.6	21
371	Lowâ€Temperature Reverse Water–Gas Shift Process and Transformation of Renewable Carbon Resources to Valueâ€Added Chemicals. ChemSusChem, 2019, 12, 5149-5156.	3.6	21
372	Improved photocatalytic performance of metal–organic frameworks for CO ₂ conversion by ligand modification. Chemical Communications, 2020, 56, 7637-7640.	2.2	21
373	Enhancing CO ₂ electroreduction to CH ₄ over Cu nanoparticles supported on N-doped carbon. Chemical Science, 2022, 13, 8388-8394.	3.7	21
374	Ru–Cd/Bentonite for the Partial Hydrogenation of Benzene: A Catalyst without Additives. ChemCatChem, 2012, 4, 1836-1843.	1.8	20
375	Heterogeneous Cobaltâ€Catalyzed Direct <i>N</i> â€Formylation of Isoquinolines with CO ₂ and H ₂ . ChemCatChem, 2017, 9, 1947-1952.	1.8	20
376	Aqueous CO ₂ Reduction with High Efficiency Using α o(OH) ₂ â€&upported Atomic Ir Electrocatalysts. Angewandte Chemie, 2019, 131, 4717-4721.	1.6	20
377	Hydrophobic ionic liquid tuning hydrophobic carbon to superamphiphilicity for reducing diffusion resistance in liquid-liquid catalysis systems. CheM, 2021, 7, 1852-1869.	5.8	20
378	Effect of compressed CO2 on the size and stability of reverse micelles: Small-angle x-ray scattering and phase behavior study. Journal of Chemical Physics, 2003, 118, 3329-3333.	1.2	19

#	Article	IF	CITATIONS
379	Immobilized 1,1,3,3-Tetramethylguanidine Ionic Liquids as the Catalyst for Synthesizing Propylene Glycol Methyl Ether. Catalysis Letters, 2010, 140, 49-54.	1.4	19
380	Efficient Transformation of Anisole into Methylated Phenols over High‣ilica HY Zeolites under Mild Conditions. ChemCatChem, 2015, 7, 2831-2835.	1.8	19
381	Solvent effects on geometrical structures and electronic properties of metal Au, Ag, and Cu nanoparticles of different sizes. Journal of Colloid and Interface Science, 2015, 449, 488-493.	5.0	19
382	Efficient Generation of Lactic Acid from Glycerol over a Ruâ€Zn u ^I /Hydroxyapatite Catalyst. Chemistry - an Asian Journal, 2017, 12, 1598-1604.	1.7	19
383	N,N-Dimethylation of nitrobenzenes with CO ₂ and water by electrocatalysis. Chemical Science, 2017, 8, 5669-5674.	3.7	19
384	Pd nanoparticles/polyoxometalate–ionic liquid composites on SiO ₂ as multifunctional catalysts for efficient production of ketones from diaryl ethers. Green Chemistry, 2018, 20, 4865-4869.	4.6	19
385	A new route to synthesize aryl acetates from carbonylation of aryl methyl ethers. Science Advances, 2018, 4, eaaq0266.	4.7	19
386	Hollow Metal–Organicâ€Frameworkâ€Mediated Inâ€Situ Architecture of Copper Dendrites for Enhanced CO 2 Electroreduction. Angewandte Chemie, 2020, 132, 8981-8986.	1.6	19
387	Hydrogen-bond donor and acceptor cooperative catalysis strategy for cyclic dehydration of diols to access O-heterocycles. Science Advances, 2021, 7, .	4.7	19
388	Photocatalytic carbon dioxide reduction coupled with benzylamine oxidation over Zn-Bi ₂ WO ₆ microflowers. Green Chemistry, 2021, 23, 2913-2917.	4.6	19
389	Enhanced CO2 electroreduction to ethylene via strong metal-support interaction. Green Energy and Environment, 2022, 7, 792-798.	4.7	19
390	A new separation method: combination of CO2 and surfactant aqueous solutions. Green Chemistry, 2008, 10, 578.	4.6	18
391	Waterâ€inâ€Supercritical CO ₂ Microemulsion Stabilized by a Metal Complex. Angewandte Chemie - International Edition, 2016, 55, 13533-13537.	7.2	18
392	Highly selective and efficient reduction of CO ₂ to CO on cadmium electrodes derived from cadmium hydroxide. Chemical Communications, 2018, 54, 5450-5453.	2.2	18
393	A route to support Pt sub-nanoparticles on TiO ₂ and catalytic hydrogenation of quinoline to 1,2,3,4-tetrahydroquinoline at room temperature. Catalysis Science and Technology, 2018, 8, 4314-4317.	2.1	18
394	Production of alkoxyl-functionalized cyclohexylamines from lignin-derived guaiacols. Green Chemistry, 2021, 23, 8441-8447.	4.6	18
395	Robust selenium-doped carbon nitride nanotubes for selective electrocatalytic oxidation of furan compounds to maleic acid. Chemical Science, 2021, 12, 6342-6349.	3.7	18
396	Copper/Carbon Heterogenous Interfaces for Enhanced Selective Electrocatalytic Reduction of CO ₂ to Formate. Small, 2021, 17, e2102629.	5.2	18

#	Article	IF	CITATIONS
397	Amide-bridged conjugated organic polymers: efficient metal-free catalysts for visible-light-driven CO ₂ reduction with H ₂ O to CO. Chemical Science, 2021, 12, 11548-11553.	3.7	18
398	Boosting CO ₂ electroreduction over Co nanoparticles supported on N,B-co-doped graphitic carbon. Green Chemistry, 2022, 24, 1488-1493.	4.6	18
399	Synthesis of montmorillonite/polystyrene nanocomposites in supercritical carbon dioxide. Journal of Applied Polymer Science, 2004, 94, 1194-1197.	1.3	17
400	A simple route to micropatterned polymer surfacesElectronic Supplementary Information (ESI) available: SEM images of other concave-patterned polymer surfaces. See http://www.rsc.org/suppdata/cc/b3/b314970f/. Chemical Communications, 2004, , 800.	2.2	17
401	Effects of ultrasound on the microenvironment in reverse micelles and synthesis of nanorods and nanofibers. Physical Chemistry Chemical Physics, 2004, 6, 2391.	1.3	17
402	The effect of supercritical water on the hydroconversion of Tahe Residue. AICHE Journal, 2010, 56, 3236-3242.	1.8	17
403	Dilational Properties of Novel Amphiphilic Dendrimers at Water–Air and Water–Heptane Interfaces. Journal of Physical Chemistry B, 2012, 116, 12760-12768.	1.2	17
404	Structures and Thermodynamic Properties of Ionic Liquids. Structure and Bonding, 2014, , 107-139.	1.0	17
405	Imidazolate ionic liquids for high-capacity capture and reliable storage of iodine. Communications Chemistry, 2018, 1, .	2.0	17
406	Highly Efficient Synthesis of Amino Acids by Amination of Bioâ€Derived Hydroxy Acids with Ammonia over Ru Supported on Nâ€Doped Carbon Nanotubes. ChemSusChem, 2020, 13, 5683-5689.	3.6	17
407	Biomass-derived metal–organic hybrids for CO ₂ transformation under ambient conditions. Green Chemistry, 2020, 22, 2846-2851.	4.6	17
408	Electrochemical Reduction of Carbon Dioxide to Ethanol: An Approach to Transforming Greenhouse Gas to Fuel Source. Chemistry - an Asian Journal, 2021, 16, 588-603.	1.7	17
409	Continuous-flow formic acid production from the hydrogenation of CO ₂ without any base. Green Chemistry, 2021, 23, 1978-1982.	4.6	17
410	Preparation of mesoporous MCM-41/poly(acrylic acid) composites using supercritical CO2 as a solvent. Journal of Materials Chemistry, 2003, 13, 1373.	6.7	16
411	Organotin-oxomolybdate coordination polymer as catalyst for synthesis of unsymmetrical organic carbonates. Green Chemistry, 2011, 13, 922.	4.6	16
412	Solvent Impedes CO ₂ Cycloaddition on Metal–Organic Frameworks. Chemistry - an Asian Journal, 2018, 13, 386-389.	1.7	16
413	Boosting CO ₂ Electroreduction over a Cadmium Singleâ€Atom Catalyst by Tuning of the Axial Coordination Structure. Angewandte Chemie, 2021, 133, 20971-20978.	1.6	16
414	Boosting CO ₂ electroreduction to C ₂₊ products on fluorine-doped copper. Green Chemistry, 2022, 24, 1989-1994.	4.6	16

#	Article	IF	CITATIONS
415	Semiconductor Nanocrystals Emitting in the Second Nearâ€Infrared Window: Optical Properties and Application in Biomedical Imaging. Advanced Optical Materials, 2022, 10, .	3.6	16
416	UVâ€Vis spectroscopic study of molecular clustering in supercritical CO ₂ â€acetone mixtures. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998, 102, 695-700.	0.9	15
417	Preparation of Poly(vinyl chloride)/Polystyrene Miscible Blends Using Supercritical CO2 as a Swelling Agent. Macromolecular Rapid Communications, 2002, 23, 626.	2.0	15
418	Precipitation polymerization of methyl methacrylate in tetrahydrofuran with compressed CO2 as antisolvent. Journal of Applied Polymer Science, 2003, 88, 2427-2433.	1.3	15
419	Compressed CO2-enhanced solubilization of 1-butyl-3-methylimidazolium tetrafluoroborate in reverse micelles of Triton X-100. Journal of Chemical Physics, 2004, 121, 7408-7412.	1.2	15
420	Synthesis of higher alcohols from CO ₂ hydrogenation over a PtRu/Fe ₂ O ₃ catalyst under supercritical condition. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20150006.	1.6	15
421	Synthesis of Supported Ultrafine Nonâ€noble Subnanometerâ€6cale Metal Particles Derived from Metal–Organic Frameworks as Highly Efficient Heterogeneous Catalysts. Angewandte Chemie, 2016, 128, 1092-1096.	1.6	15
422	Selective hydration of asymmetric internal aryl alkynes without directing groups to α-aryl ketones over Cu-based catalyst. New Journal of Chemistry, 2017, 41, 6290-6295.	1.4	15
423	Synthesis of acetamides using CO ₂ , methanol, H ₂ and amines. Green Chemistry, 2019, 21, 233-237.	4.6	15
424	Hydrogenâ€Bonding Catalyzed Ringâ€Closing Câ^'O/Câ^'O Metathesis of Aliphatic Ethers over Ionic Liquid under Metalâ€Free Conditions. Angewandte Chemie, 2020, 132, 11948-11953.	1.6	15
425	The Impact of Structural Defects on Iodine Adsorption in UiO-66. Chemistry, 2021, 3, 525-531.	0.9	15
426	Compressed Ethylene-Assisted Formation of the Reverse Micelle of PEOâ^'PPOâ^'PEO Copolymer. Macromolecules, 2003, 36, 1289-1294.	2.2	14
427	Phase Behaviors, Density, and Isothermal Compressibility of Styrene + CO2, Ethylbenzene + CO2, and Ethylbezene + Styrene + CO2 Systems. Journal of Chemical & Engineering Data, 2005, 50, 1818-1822.	1.0	14
428	CO2-responsive TX-100 emulsion for selective synthesis of 1D or 3D gold. Soft Matter, 2010, 6, 6200.	1.2	14
429	Hydrocracking of Anthracene to Ethyl Biphenyl Promoted by Coupling Supercritical Water and Cracking Catalysts. ChemCatChem, 2011, 3, 1474-1479.	1.8	14
430	Enhancing the selective hydrogenation of benzene to cyclohexene over Ru/TiO2 catalyst in the presence of a very small amount of ZnO. Science China Chemistry, 2015, 58, 93-100.	4.2	14
431	Microwave assisted synthesis of glycerol carbonate from glycerol and urea. Pure and Applied Chemistry, 2018, 90, 1-6.	0.9	14
432	Synthesis of Sn ₄ P ₃ /reduced graphene oxide nanocomposites as highly efficient electrocatalysts for CO ₂ reduction. Green Chemistry, 2020, 22, 6804-6808.	4.6	14

#	Article	IF	CITATIONS
433	Selective Hydrogenolysis of Lignin Model Compounds to Aromatics over a Cobalt Nanoparticle Catalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 11862-11871.	3.2	14
434	Insoluble Wilkinson Catalyst RhCl(TPPTS)3 Supported on SBA-15 for Heterogeneous Hydrogenation with and Without Supercritical CO2. Catalysis Letters, 2004, 98, 225-228.	1.4	13
435	Preparation of silica and titanium-containing silica hollow spheres at supercritical CO2/H2O interface. Journal of Supercritical Fluids, 2007, 42, 142-149.	1.6	13
436	CO2-controlled reactors: epoxidation in emulsions with droplet size from micron to nanometre scale. Green Chemistry, 2010, 12, 452.	4.6	13
437	Hydrogenation of methyl laurate to produce lauryl alcohol over Cu/ZnO/Al2O3 with methanol as the solvent and hydrogen source. Pure and Applied Chemistry, 2011, 84, 779-788.	0.9	13
438	Dehydration of Carbohydrates to 5â€Hydroxymethylfurfural in Ionic Liquids Catalyzed by Hexachlorotriphosphazene. Chinese Journal of Chemistry, 2012, 30, 2079-2084.	2.6	13
439	ZnI ₂ /NEt ₃ â€Catalyzed Cycloaddition of CO ₂ with Propargylic Alcohols: Computational Study on Mechanism. ChemCatChem, 2017, 9, 4090-4097.	1.8	13
440	Selective Utilization of the Methoxy Group in Lignin to Produce Acetic Acid. Angewandte Chemie, 2017, 129, 15064-15068.	1.6	13
441	Design of naturally derived lead phytate as an electrocatalyst for highly efficient CO ₂ reduction to formic acid. Green Chemistry, 2018, 20, 4602-4606.	4.6	13
442	β-Cyclodextrin/Quaternary Ammonium Salt as an Efficient Catalyst System for Chemical Fixation of CO ₂ . Journal of Nanoscience and Nanotechnology, 2019, 19, 3263-3268.	0.9	13
443	Hierarchically macro–meso–microporous metal–organic framework for photocatalytic oxidation. Chemical Communications, 2020, 56, 10754-10757.	2.2	13
444	The production of 4-ethyltoluene <i>via</i> directional valorization of lignin. Green Chemistry, 2020, 22, 2191-2196.	4.6	13
445	Palladium-catalyzed synthesis of 4-cyclohexylmorpholines from reductive coupling of aryl ethers and lignin model compounds with morpholines. Green Chemistry, 2021, 23, 268-273.	4.6	13
446	Highly efficient catalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using bimetallic Pt–Cu alloy nanoparticles as catalysts. Chemical Communications, 2022, 58, 1183-1186.	2.2	13
447	Solubility of ethane int-butanol + water mixtures and a hydrophobic interaction study. Journal of Solution Chemistry, 1996, 25, 1281-1289.	0.6	12
448	Conversions of Cellobiose and Inulin to Deoxyfructosazine in Aqueous Solutions. Clean - Soil, Air, Water, 2011, 39, 572-576.	0.7	12
449	Self-Aggregation of Amphiphilic Dendrimer in Aqueous Solution: The Effect of Headgroup and Hydrocarbon Chain Length. Langmuir, 2015, 31, 7919-7925.	1.6	12
450	Switching chirality in the assemblies of bio-based amphiphiles solely by varying their alkyl chain length. Chemical Communications, 2017, 53, 2162-2165.	2.2	12

#	Article	IF	CITATIONS
451	Efficient Solvent-Free Synthesis of Cyclic Carbonates from the Cycloaddition of Carbon Dioxide and Epoxides Catalyzed by New Imidazolinium Functionalized Metal Complexes Under 0.1ÂMPa. Catalysis Letters, 2020, 150, 2537-2548.	1.4	12
452	Design and Preparation of Electrocatalysts by Electrodeposition for CO ₂ Reduction. Chemistry - A European Journal, 2022, 28, .	1.7	12
453	CO ₂ -Assisted synthesis of a crystalline/amorphous NiFe-MOF heterostructure for high-efficiency electrocatalytic water oxidation. Chemical Communications, 2022, 58, 6833-6836.	2.2	12
454	Investigation on Interaction between Sodium Dodecyl Sulfate and Polyacrylamide by Electron Spin Resonance and Ultraviolet Spectrum. Journal of Physical Chemistry B, 2001, 105, 4824-4826.	1.2	11
455	Solvothermal synthesis of carbon nitrogen nanotubes and nanofibers. Journal of Materials Research, 2006, 21, 1658-1663.	1.2	11
456	Low temperature hydrogenation of α-angelica lactone on silica supported Pd–NiO catalysts with synergistic effect. RSC Advances, 2016, 6, 65377-65382.	1.7	11
457	Tin(IV) Sulfide Greatly Improves the Catalytic Performance of UiOâ€66 for Carbon Dioxide Cycloaddition. ChemCatChem, 2018, 10, 2945-2948.	1.8	11
458	Highly Efficient CO ₂ Electroreduction to Methanol through Atomically Dispersed Sn Coupled with Defective CuO Catalysts. Angewandte Chemie, 2021, 133, 22150-22158.	1.6	11
459	Tuning the efficiency and product composition for electrocatalytic CO ₂ reduction to syngas over zinc films by morphology and wettability. Green Chemistry, 2022, 24, 1439-1444.	4.6	11
460	Synthesis of Carboxylic Acids via Hydrocarboxylation of Alcohols with CO2 and H2. Green Chemistry, 0, , .	4.6	11
461	Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling towards Carbon Neutrality. Angewandte Chemie, 2022, 134, .	1.6	11
462	Synthesis of composites of silicon rubber and polystyrene using supercritical CO2 as a swelling agent. Journal of Materials Chemistry, 2002, 12, 2688-2691.	6.7	10
463	Synthesis of Propylene Glycol Methyl Ether Catalyzed by MCM-41. Synthetic Communications, 2011, 41, 891-897.	1.1	10
464	Efficient dehydration of carbohydrates to 5-hydroxymethylfurfural in ionic liquids catalyzed by tin(IV) phosphonate and zirconium phosphonate. Science China Chemistry, 2013, 56, 1578-1585.	4.2	10
465	Effect Analysis of Mineral Salt Concentrations on Nosiheptide Production by Streptomyces actuosus Z-10 Using Response Surface Methodology. Molecules, 2014, 19, 15507-15520.	1.7	10
466	CO ₂ /Water Emulsions Stabilized by Partially Reduced Graphene Oxide. ACS Applied Materials & Interfaces, 2017, 9, 17613-17619.	4.0	10
467	Ethylenediamine promoted the hydrogenative coupling of nitroarenes over Ni/C catalyst. Chinese Chemical Letters, 2019, 30, 203-206.	4.8	10
468	Synthesis of thioethers, arenes and arylated benzoxazoles by transformation of the C(aryl)–C bond of aryl alcohols. Chemical Science, 2020, 11, 7634-7640.	3.7	10

#	Article	IF	CITATIONS
469	Quasi-square-shaped cadmium hydroxide nanocatalysts for electrochemical CO ₂ reduction with high efficiency. Chemical Science, 2021, 12, 11914-11920.	3.7	10
470	Production of Piperidine and Î′â€Lactam Chemicals from Biomassâ€Derived Triacetic Acid Lactone. Angewandte Chemie - International Edition, 2021, 60, 14405-14409.	7.2	10
471	A CO ₂ -mediated base catalysis approach for the hydration of triple bonds in ionic liquids. Green Chemistry, 2021, 23, 9870-9875.	4.6	10
472	Highly effective and chemoselective hydrodeoxygenation of aromatic alcohols. Chemical Science, 2022, 13, 1629-1635.	3.7	10
473	Hydrogen-bonding and acid cooperative catalysis for benzylation of arenes with benzyl alcohols over ionic liquids. Green Chemistry, 2022, 24, 3137-3142.	4.6	10
474	Stability of high-bandwidth graded-index polymer optical fiber. Journal of Applied Polymer Science, 2004, 91, 2330-2334.	1.3	9
475	Supercritical CO2 assisted processing of polystyrene/nylon 1212 blends and CO2-induced epitaxy on nylon 1212. Journal of Applied Polymer Science, 2004, 92, 2023-2029.	1.3	9
476	Novozym 435 catalyzed regioselective acylation of ethane-1,2-diol in the presence of ionic liquids. Catalysis Letters, 2007, 116, 46-49.	1.4	9
477	Efficient separation of surfactant and organic solvent by CO2. Chemical Communications, 2011, 47, 5816.	2.2	9
478	Special topic on ionic liquids: Energy, materials & environment. Science China Chemistry, 2016, 59, 505-506.	4.2	9
479	Poly(ethylene glycol) based bis-diol as a functional medium for highly efficient conversion of urea and methanol to dimethyl carbonate. Green Chemistry, 2016, 18, 798-801.	4.6	9
480	Facile Synthesis of Ethyl-4-ethoxy Pentanoate as a Novel Biofuel Additive Derived from γ-Valerolactone. ACS Sustainable Chemistry and Engineering, 2017, 5, 6645-6653.	3.2	9
481	Interfacial assembly and hydrolysis for synthesizing a TiO2/metal–organic framework composite. Soft Matter, 2017, 13, 9174-9178.	1.2	9
482	Synthesis of nitrogen and sulfur co-doped hierarchical porous carbons and metal-free oxidative coupling of silanes with alcohols. Chemical Communications, 2017, 53, 13019-13022.	2.2	9
483	Carbon dioxide droplets stabilized by g-C ₃ N ₄ . Green Chemistry, 2018, 20, 4206-4209.	4.6	9
484	Synthesis of higher carboxylic acids via reaction of polyols with CO2 and H2. Chem Catalysis, 2022, 2, 114-124.	2.9	9
485	Selective photocatalytic aerobic oxidation of methane into carbon monoxide over Ag/AgCl@SiO ₂ . Chemical Science, 2022, 13, 4616-4622.	3.7	9
486	Vapor Pressure of the Aqueous Solution of Sodium Dodecyl Sulfate. Journal of Chemical & Engineering Data, 1996, 41, 285-286.	1.0	8

#	Article	IF	CITATIONS
487	Utilization of Supercritical Carbon Dioxide for the Preparation of 3-Hydroxyflavone and β-Cyclodextrin Complex. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 55, 37-40.	1.6	8
488	Elimination of the negative effect of nitrogen compounds by CO2–water in the hydrocracking of anthracene. Green Chemistry, 2012, 14, 1854.	4.6	8
489	Metal–Organic Framework for Emulsifying Carbon Dioxide and Water. Angewandte Chemie, 2016, 128, 11544-11548.	1.6	8
490	Porous, Naturally Derived Hafnium Phytate for the Highly Chemoselective Transfer Hydrogenation of Aldehydes with Other Reducible Moieties. ChemCatChem, 2018, 10, 725-730.	1.8	8
491	Selective production of diethyl maleate from lignin. Green Energy and Environment, 2019, 4, 343-344.	4.7	8
492	Water nanodomains for efficient photocatalytic CO ₂ reduction to CO. Green Chemistry, 2021, 23, 9078-9083.	4.6	8
493	Towards sustainable CO2 electrochemical transformation via coupling design strategy. Materials Today Sustainability, 2022, 19, 100179.	1.9	8
494	Solubility of Behenic Acid in Supercritical CO2withn-Pentane orn-Octane Cosolvents. Journal of Chemical & Engineering Data, 1999, 44, 1204-1206.	1.0	7
495	How does magnetic field affect polymerization in supercritical fluids? Study of radical polymerization in supercritical CO2. New Journal of Chemistry, 2002, 26, 958-961.	1.4	7
496	Preparation of polyacrylamide/CdS nanocomposites by a combination of reverse microemulsion and CO2 antisolvent techniques. Colloid and Polymer Science, 2004, 282, 1179-1183.	1.0	7
497	Phase Behavior, Densities, and Isothermal Compressibility of the CO2+ Ethanol + Dichloromethane Ternary System in Different Phase Regions. Journal of Chemical & Engineering Data, 2005, 50, 1153-1156.	1.0	7
498	Integrated polymer spherulites growing from one homogeneous nucleation site in supercritical fluid. New Journal of Chemistry, 2009, 33, 1841.	1.4	7
499	Enhanced stabilization of vesicles formed in mixed cationic and anionic surfactant systems by compressed gases. RSC Advances, 2011, 1, 776.	1.7	7
500	High-pressure phase behaviors of CO2+1-propanol+ionic liquid ternary systems. Journal of Supercritical Fluids, 2012, 69, 108-112.	1.6	7
501	N-vinyl pyrrolidone promoted aqueous-phase dehydrogenation of formic acid over PVP-stabilized Ru nanoclusters. Science China Chemistry, 2016, 59, 1342-1347.	4.2	7
502	Dehydroxyalkylative halogenation of C(aryl)–C bonds of aryl alcohols. Chemical Communications, 2020, 56, 7120-7123.	2.2	7
503	Rational design of nanocatalysts for ambient ammonia electrosynthesis. Pure and Applied Chemistry, 2021, 93, 777-797.	0.9	7
504	Supercritical Carbon Dioxide (CO2) as Green Solvent. , 2013, , 297-326.		7

Supercritical Carbon Dioxide (CO2) as Green Solvent. , 2013, , 297-326. 504

#	Article	IF	CITATIONS
505	Alcohol promoted <i>N</i> -methylation of anilines with CO ₂ /H ₂ over a cobalt catalyst under mild conditions. Green Chemistry, 2021, 23, 9147-9153.	4.6	7
506	Hydrogen-Bonding-Mediated Selective Hydrogenation of Aromatic Ketones over Pd/C in Ionic Liquids at Room Temperature. ACS Sustainable Chemistry and Engineering, 2021, 9, 14216-14223.	3.2	7
507	Cobalt Carbonate-Coated Nitrogen-Doped Carbon Nanotubes with a Sea-Cucumber Morphology for Electrocatalytic Water Splitting. Langmuir, 2021, 37, 14767-14776.	1.6	7
508	Solubilities of 1,2,3-trimethylbenzene and 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene in t-butyl alcohol+water mixtures and hydrophobic interaction. Science in China Series B: Chemistry, 1999, 42, 400-410.	0.8	6
509	Precipitation polymerization of acrylic acid in compressed carbon dioxide-cosolvent systems. Journal of Applied Polymer Science, 2003, 88, 1876-1880.	1.3	6
510	Studies on Dynamic Surface Tension of an Outstanding Microemulsifier in Supercritical CO2and Its Wetting Performance. Journal of Dispersion Science and Technology, 2005, 26, 745-751.	1.3	6
511	Acceleration of Disproportionation of Aromatic Alcohols through Selfâ€Emulsification of Reactants in Water. ChemSusChem, 2012, 5, 2469-2473.	3.6	6
512	Waterâ€in‣upercritical CO ₂ Microemulsion Stabilized by a Metal Complex. Angewandte Chemie, 2016, 128, 13731-13735.	1.6	6
513	Formation of large nanodomains in liquid solutions near the phase boundary. Chemical Communications, 2016, 52, 14286-14289.	2.2	6
514	Synthesis of hierarchical porous β-FeOOH catalysts in ionic liquid/water/CH2Cl2 ionogels. Chemical Communications, 2016, 52, 4687-4690.	2.2	6
515	Metal Ionic Liquids Produce Metalâ€Dispersed Carbonâ€Nitrogen Networks for Efficient CO 2 Electroreduction. ChemCatChem, 2019, 11, 3166-3170.	1.8	6
516	Selective aerobic oxidation of cyclic ethers to lactones over Au/CeO2 without any additives. Chemical Communications, 2020, 56, 2638-2641.	2.2	6
517	Ultra-thin g-C ₃ N ₄ /MFM-300(Fe) heterojunctions for photocatalytic aerobic oxidation of benzylic carbon centers. Materials Advances, 2021, 2, 5144-5149.	2.6	6
518	Fabrication of Superamphiphilic Carbon Using Lignosulfonate for Enhancing Selective Hydrogenation Reactions in Pickering Emulsions. ACS Applied Materials & Interfaces, 2021, 13, 25234-25240.	4.0	6
519	Interface engineered Co, Ni, Fe, Cu oxide hybrids with biphasic structures for water splitting with enhanced activity. Journal of Colloid and Interface Science, 2022, 609, 149-157.	5.0	6
520	Organic amine mediated cleavage of C _{aromatic} –C _α bonds in lignin and its platform molecules. Chemical Science, 2021, 12, 15110-15115.	3.7	6
521	Highly efficient C(CO)–C(alkyl) bond cleavage in ketones to access esters over ultrathin N-doped carbon nanosheets. Chemical Science, 2022, 13, 5196-5204.	3.7	6
522	BiO _{2-x} Nanosheets with Surface Electron Localizations for Efficient Electrocatalytic CO ₂ Reduction to Formate. CCS Chemistry, 2023, 5, 133-144.	4.6	6

#	Article	IF	CITATIONS
523	The Role of Chain Length and Structure in Surfactant Adsorption at Na-Kaolinite. Adsorption Science and Technology, 1998, 16, 565-575.	1.5	5
524	Solubilities of benzene, toluene and diphenyl in the t-butyl alcohol+water mixtures and hydrophobic interaction. Science in China Series B: Chemistry, 1999, 42, 225-235.	0.8	5
525	Enlargement of cationic alkyl polyglycoside micelles by ionic liquid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 336, 110-114.	2.3	5
526	Synthesis of unsymmetrical organic carbonates catalyzed by a sulfonic acid-functionalized zirconium phosphonate. Pure and Applied Chemistry, 2011, 84, 675-684.	0.9	5
527	Controllable Self-Assembly of Amphiphilic Dendrimers on a Silica Surface: The Effect of Molecular Topological Structure and Salinity. Journal of Physical Chemistry B, 2016, 120, 10990-10999.	1.2	5
528	Preface: Special issue on green chemistry. Science China Chemistry, 2017, 60, 837-838.	4.2	5
529	Salt-mediated synthesis of bimetallic networks with structural defects and their enhanced catalytic performances. Chemical Communications, 2018, 54, 12065-12068.	2.2	5
530	Hierarchical Metal–Polymer Hybrids for Enhanced CO 2 Electroreduction. Angewandte Chemie, 2021, 133, 11072-11077.	1.6	5
531	Crystal-phase engineering of PdCu nanoalloys facilitates selective hydrodeoxygenation at room temperature. Innovation(China), 2022, 3, 100189.	5.2	5
532	Preparation of trimetallic electrocatalysts by one-step co-electrodeposition and efficient CO ₂ reduction to ethylene. Chemical Science, 2022, 13, 7509-7515.	3.7	5
533	Phase equilibria of supercritical CO2-ethanol-stearic acid ternary system and hydrogen bonding between ethanol and stearic acid. Science in China Series B: Chemistry, 1998, 41, 410-417.	0.8	4
534	Synthesis of Bis(trimethylsilyl)acetylene (BTMSA) by Direct Reaction of CaC 2 with N â€(trimethylsilyl)imidazole. ChemistrySelect, 2020, 5, 3644-3646.	0.7	4
535	Anchoring Ionic Liquid in Copper Electrocatalyst for Improving CO ₂ Conversion to Ethylene. Angewandte Chemie, 2022, 134, .	1.6	4
536	Construction of Synergistic Co and Cu Diatomic Sites for Enhanced Higher Alcohol Synthesis. CCS Chemistry, 2023, 5, 851-864.	4.6	4
537	Periodically nanoporous hydrogen-bonded organic frameworks for high performance photocatalysis. Nanoscale, 2022, 14, 9762-9770.	2.8	4
538	The Hydrophobic Effect in the Adsorption Process of Alkyltrimethylammonium Bromides on to Activated Carbon. Adsorption Science and Technology, 1998, 16, 557-564.	1.5	3
539	A titration microcalorimeter and the vesicle of mixed surfactants. Science in China Series B: Chemistry, 2000, 43, 617-624.	0.8	3
540	Complexation-supercritical carbon dioxide extraction of copper ions from solid matrices with thenoyltrifluoroacetone and modifiers. Separation Science and Technology, 2002, 37, 2691-2700.	1.3	3

#	Article	IF	CITATIONS
541	Aggregation Behaviors of Novel Amphiphilic Dendrimers at Solid-Liquid Interface. Journal of Dispersion Science and Technology, 2014, 35, 456-462.	1.3	3
542	Ultrathin and Porous Carbon Nanosheets Supporting Bimetallic Nanoparticles for Highâ€Performance Electrocatalysis. ChemCatChem, 2018, 10, 1241-1247.	1.8	3
543	Large Scale Synthesis of Transition Metal Single Atom Catalysts by a Universal Ligand Mediated Method. Chemical Research in Chinese Universities, 2019, 35, 951-952.	1.3	3
544	A Synthetic Strategy of Ultrathin High-κ Antimony Oxide Single Crystals. Chemical Research in Chinese Universities, 2020, 36, 721-722.	1.3	3
545	Supercritical Carbon Dioxide (CO2) as Green Solvent. , 2019, , 173-197.		3
546	Green Chemistry. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 837-837.	2.2	3
547	Effect of ultrasound on the microstructure of polystyrene in cyclohexane: a synchrotron small-angle X-ray scattering study. Colloid and Polymer Science, 2007, 285, 1275-1279.	1.0	2
548	Bimetallic Au/Pd catalyzed aerobic oxidation of alcohols in the poly(ethylene glycol)/CO2 system. Science China Chemistry, 2010, 53, 1592-1597.	4.2	2
549	Water-mediated phase-change composite electrolyte. Green Energy and Environment, 2020, 5, 249-250.	4.7	2
550	Superamphiphilic carbon from sawdust activated by oxygen/argon mixtures promoting the oxidation of benzyl alcohol in Pickering emulsion. Green Chemistry, 2021, 23, 6341-6348.	4.6	2
551	Efficient synthesis of cyclic carbonates from CO ₂ under ambient conditions over Zn(betaine) ₂ Br ₂ : experimental and theoretical studies. Physical Chemistry Chemical Physics, 2022, 24, 4298-4304.	1.3	2
552	Enthalpy of adsorption and adsorption isotherms of polyacrylamide on sea sand. Journal of Thermal Analysis, 1995, 45, 7-12.	0.7	1
553	Characterization of refractive index distribution of polymer optical fiber. Science Bulletin, 2002, 47, 982-985.	1.7	1
554	The molecular clusters in a supercritical fluid–solid system should be considered as a phase—thermodynamic principle and evidence. Physical Chemistry Chemical Physics, 2013, 15, 10654.	1.3	1
555	Acceleration of disproportionation reactions of aryl alcohols in water medium by CO2. Science China Chemistry, 2013, 56, 1436-1439.	4.2	1
556	Highly dispersible silver nanowires via a diblock copolymer approach for potential application in transparent conductive composites. New Journal of Chemistry, 2017, 41, 6349-6358.	1.4	1
557	Chirality Inversion of Assemblies of Bio-based Surfactant Triggered by Metal Ions. Chemical Research in Chinese Universities, 2018, 34, 155-157.	1.3	1
558	Surface-Engineered Nanocontainers Based on Molecular Self-Assembly and Their Release of Methenamine. Polymers, 2018, 10, 163.	2.0	1

#	Article	IF	CITATIONS
559	Synthesis and characterization of size-controlled silver nanowires. Physical Sciences Reviews, 2018, 3, .	0.8	1
560	Monomeric vanadium oxide: a very efficient species for promoting aerobic oxidative dehydrogenation of N-heterocycles. New Journal of Chemistry, 2021, 45, 431-437.	1.4	1
561	Highly Efficient Oxidative Cyanation of Aldehydes to Nitriles over Se,S,N―tri â€Doped Hierarchically Porous Carbon Nanosheets. Angewandte Chemie, 2021, 133, 21649-21655.	1.6	1

562 æ–°åž‹å⊷啉基离åæ¶²ä¼′"ä,碳水化å•̂物é«~æ•`輬化ä,º5-羟ç"²åŸºç³é†›. Chinese Science Bulletino,2015, 60, 1522-152

563	Supercritical Carbon Dioxide (CO2) as Green Solvent. , 2019, , 1-25.		1
564	Frontispiece: Design and Preparation of Electrocatalysts by Electrodeposition for CO ₂ Reduction. Chemistry - A European Journal, 2022, 28, .	1.7	1
565	Thermodynamic study on conformation change of carbonic anhydrase. Science Bulletin, 1998, 43, 1802-1805.	1.7	0
566	Linear correlation of isothermal densities of fluid mixtures in near-critical region. High Temperature, 2010, 48, 295-298.	0.1	0
567	Synthesis of Hierarchical Porous Metals Using Ionicâ€Liquidâ€Based Media as Solvent and Template. Angewandte Chemie, 2017, 129, 12857-12860.	1.6	0

568	Titelbild: Selective Utilization of the Methoxy Group in Lignin to Produce	Acetic Acid (Angew. Chem.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf
-----	--	--

569	The 6 th International IUPAC Conference on Green Chemistry 4–8 September 2016 – Venezia (Italy). Pure and Applied Chemistry, 2018, 90, 235-237.	0.9	0
570	Editorial for the Special Issue of ChemSusChem on Green Carbon Science: CO 2 Capture and Conversion. ChemSusChem, 2020, 13, 6051-6053.	3.6	0
571	Production of Piperidine and δâ€Lactam Chemicals from Biomassâ€Derived Triacetic Acid Lactone. Angewandte Chemie, 2021, 133, 14526-14530.	1.6	0
572	Boosting the Productivity of Electrochemical CO ₂ Reduction to Multiâ€Carbon Products by Enhancing CO ₂ Diffusion through a Porous Organic Cage. Angewandte Chemie, 0, , .	1.6	0