Kannupal Srinivasan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/21303/publications.pdf

Version: 2024-02-01

687363 27 556 13 citations h-index papers

23 g-index 27 27 27 460 docs citations times ranked citing authors all docs

642732

#	Article	IF	CITATIONS
1	Highly Diastereoselective Synthesis of 1-Pyrrolines <i>via</i> SnCl ₄ -Promoted [3 + 2] Cycloaddition between Activated Donor–Acceptor Cyclopropanes and Nitriles. Organic Letters, 2011, 13, 6002-6005.	4.6	80
2	[3+3] Annulation of donor–acceptor cyclopropanes with mercaptoacetaldehyde: application to the synthesis of tetrasubstituted thiophenes. Chemical Communications, 2014, 50, 4062.	4.1	63
3	Boron Trifluoride Mediated Ring-Opening Reactions of <i>trans</i> -2-Aryl-3-nitro-cyclopropane-1,1-dicarboxylates. Synthesis of Aroylmethylidene Malonates as Potential Building Blocks for Heterocycles. Journal of Organic Chemistry, 2014, 79, 3653-3658.	3.2	50
4	Synthesis of 2,4,5-trisubstituted oxazoles through tin(<scp>iv</scp>) chloride-mediated reaction of trans-2-aryl-3-nitro-cyclopropane-1,1-dicarboxylates with nitriles. Chemical Communications, 2014, 50, 10845.	4.1	35
5	Indium(<scp>iii</scp>) triflate-catalysed [4 + 2] benzannulation reactions of o-alkynylbenzaldehydes with enolisable carbonyl compounds: selective synthesis of naphthyl ketones. Organic and Biomolecular Chemistry, 2014, 12, 269-277.	2.8	32
6	Neighbouring Formyl Group Assisted Oxidation of <i>>o</i> â€Alkynylarenecarbaldehydes by an lodine/Water System. European Journal of Organic Chemistry, 2011, 2011, 2781-2784.	2.4	31
7	Iodine/Waterâ€Mediated Oxidation of <i>>o</i> â€Alkynylaroyl Compounds and Application of the Products of Oxidation in the Synthesis of Nitrogen Heterocycles. European Journal of Organic Chemistry, 2013, 2013, 3386-3396.	2.4	31
8	Lewis Acidâ∈Mediated Transformations of <i>trans</i> àê2â€Aroylâ€3â€arylâ€cyclopropaneâ€1,1â€dicarboxylate 2â€Pyrones and 1â€Indanones. Advanced Synthesis and Catalysis, 2014, 356, 729-735.	es ₄ into	28
9	Synthesis of 2,3-disubstituted thiophenes from 2-aryl-3-nitro-cyclopropane-1,1-dicarboxylates and 1,4-dithiane-2,5-diol. RSC Advances, 2015, 5, 49326-49329.	3.6	21
10	Synthetic Applications of Aroyl―and Nitroâ€substituted 2â€Arylâ€Cyclopropaneâ€1,1â€Dicarboxylates. Israel Journal of Chemistry, 2016, 56, 454-462.	2.3	19
11	Lewis Acid-Mediated Ring-Opening Reactions of <i>trans</i> -2-Aroyl-3-styrylcyclopropane-1,1-dicarboxylates: Access to Cyclopentenes and <i>E</i> , <i>E</i> -1,3-Dienes. Journal of Organic Chemistry, 2018, 83, 571-577.	3.2	19
12	A Tandem Strategy for the Synthesis of 1 <i>H</i> â€Benzo[<i>g</i>]indazoles and Naphtho[2,1â€ <i>d</i>]isoxazoles from <i>o</i> â€Alkynylarene Chalcones. European Journal of Organic Chemistry, 2013, 2013, 1663-1666.	2.4	18
13	Nucleophilic ring-opening reactions of trans-2-aroyl-3-aryl-cyclopropane-1,1-dicarboxylates with hydrazines. Organic and Biomolecular Chemistry, 2017, 15, 1400-1406.	2.8	14
14	Tandem Ring Opening/Cyclization of <i>trans</i> ê2â€Arylâ€3â€nitrocyclopropaneâ€1,1â€dicarboxylates with 2â€Aminopyridines: Access to Pyrido[1,2â€ <i>a</i>]pyrimidinâ€4â€one Derivatives. European Journal of Organic Chemistry, 2017, 2017, 5644-5648.	2.4	14
15	SnCl ₄ -Promoted [3+2] Annulation of γ-Butyrolactone-Fused Donor–Acceptor Cyclopropanes with Nitriles: Access to γ-Butyrolactone-Fused 1-Pyrrolines. Journal of Organic Chemistry, 2019, 84, 8782-8787.	3.2	14
16	Iron(iii) halide or iodine-promoted synthesis of 3-haloindene derivatives from o-alkynylarene chalcones. RSC Advances, 2015, 5, 5542-5545.	3.6	13
17	Iron-Catalyzed Tandem Conia–Ene/Friedel–Crafts Reactions of o-Alkynyldihydrochalcones: Access to Benzo[b]fluorenes. Journal of Organic Chemistry, 2016, 81, 1229-1236.	3.2	13
18	Boron Trifluorideâ€Promoted Indium(III) Triflateâ€Catalyzed Sequential Oneâ€Pot Synthesis of (1,2â€Diarylâ€2â€oxoethyl)malonates from <i>trans</i> àâ€Arylâ€3â€nitrocyclopropaneâ€1,1â€dicarboxylates Activated Arenes. Advanced Synthesis and Catalysis, 2015, 357, 2111-2118.	s auced	12

#	Article	IF	CITATIONS
19	AlCl ₃ â€Promoted Ritterâ€Type Ringâ€Opening Reactions of γâ€Butyrolactone Fused Donorâ€Accep Cyclopropanes with Wet Aliphatic Nitriles. European Journal of Organic Chemistry, 2020, 2020, 593-598.	otor 2.4	9
20	Synthesis of 3,3-disubstituted-2,3-dihydroazanaphthoquinones via simultaneous alkyne oxidation and nitrile hydration of ortho-alkynylarenenitriles. Organic and Biomolecular Chemistry, 2014, 12, 6440-6446.	2.8	8
21	The Cloke–Wilson rearrangement of aroyl-substituted donor–acceptor cylopropanes containing arylethyl donors. Organic and Biomolecular Chemistry, 2022, , .	2.8	7
22	lodine-mediated synthesis of benzo[a]fluorenones from yne-enones. RSC Advances, 2019, 9, 23652-23657.	3.6	6
23	Scandium(III) Triflate-Catalyzed Reaction of Aroyl-Substituted Donor–Acceptor Cyclopropanes with 1-Naphthylamines: Access to Dibenzo[<i>c</i> , <i>h</i>)acridines. Journal of Organic Chemistry, 2021, 86, 1172-1177.	3.2	6
24	lodineâ€Catalyzed Synthesis of Highly Functionalized 1 <i>H</i> àâ€Indene Derivatives from Michael Adducts of <i>o</i> àâ€Alkynylarene Chalcones with Diethyl Malonate. European Journal of Organic Chemistry, 2015, 2015, 7652-7655.	2.4	5
25	Synthesis and biological evaluation of new 1, <scp>4â€benzothiazine</scp> derivatives as potential <scp>COX</scp> â€2 inhibitors. Journal of Heterocyclic Chemistry, 2022, 59, 351-358.	2.6	4
26	Tin(<scp>iv</scp>) chloride mediated (3 + 2) annulation of <i>trans</i> -2-aroyl-3-styrylcyclopropane-1,1-dicarboxylates with nitriles: diastereoselective access to 5-vinyl-1-pyrroline derivatives. RSC Advances, 2021, 11, 14980-14985.	3.6	3
27	Structural exploration of common pharmacophore based berberine derivatives as novel histone deacetylase inhibitor targeting HDACs enzymes. Journal of Biomolecular Structure and Dynamics, 2023, 41, 1690-1703.	3.5	1