Jinlei Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2130257/publications.pdf

Version: 2024-02-01

		567144	610775
77	838	15	24
papers	citations	h-index	g-index
88	88	88	960
all docs	docs citations	times ranked	citing authors

#	ARTICLE	IF	CITATIONS
1	Thermoelectric properties of mmi:math xmins:mmi="http://www.w3.org/1998/Math/Math/MithML" display="inline"> <mml:mi>p</mml:mi> -type CuInSe <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> chalcopyrites enhanced by introduction of	1.1	57
2	Cu ₃ Pâ€"Ni ₂ P Hybrid Hexagonal Nanosheet Arrays for Efficient Hydrogen Evolution Reaction in Alkaline Solution. Inorganic Chemistry, 2019, 58, 11630-11635.	1.9	47
3	Annealing effects of TiO2 coating on cycling performance of Ni-rich cathode material LiNi0.8Co0.1Mn0.1O2 for lithium-ion battery. Materials Letters, 2020, 265, 127418.	1.3	39
4	Decoupling the Electrical Conductivity and Seebeck Coefficient in the <i>RE</i> ₂ SbO ₂ Compounds through Local Structural Perturbations. Journal of the American Chemical Society, 2012, 134, 1426-1429.	6.6	38
5	Structural and relative stabilities, electronic properties and possible reactive routing of osmium and ruthenium borides from first-principles calculations. Dalton Transactions, 2013, 42, 7041.	1.6	31
6	Structural distortion and band gap opening of hard MnB4 in comparison with CrB4 and FeB4. Journal of Solid State Chemistry, 2014, 213, 52-56.	1.4	28
7	Effects of Mn substitution on the structure and properties of chalcopyrite-type CulnSe2. Journal of Solid State Chemistry, 2009, 182, 2579-2586.	1.4	27
8	Site Preference of Manganese on the Copper Site in Mn-Substituted CuInSe ₂ Chalcopyrites Revealed by a Combined Neutron and X-ray Powder Diffraction Study. Chemistry of Materials, 2010, 22, 1647-1655.	3.2	25
9	Field-Induced Spin-Flop in Antiferromagnetic Semiconductors with Commensurate and Incommensurate Magnetic Structures: Li ₂ FeGeS ₄ (LIGS) and Li ₂ FeSnS ₄ (LITS). Inorganic Chemistry, 2014, 53, 12265-12274.	1.9	24
10	Simultaneous detection of trace Ag(I) and Cu(II) ions using homoepitaxially grown GaN micropillar electrode. Analytica Chimica Acta, 2020, 1100 , $22-30$.	2.6	24
11	Tuning Magnetic and Structural Transitions through Valence Electron Concentration in the Giant Magnetocaloric Gd _{5–⟨i⟩x⟨ i⟩⟨ sub⟩Eu⟨sub⟩⟨i>x⟨ i>⟨ sub⟩Ge⟨sub>4⟨ sub⟩ Phases. Chemistry of Materials, 2012, 24, 552-556.}	3.2	22
12	Synthesis and magnetic study for Fe-doped carbon nanotubes (CNTs). Journal of Crystal Growth, 2005, 277, 293-297.	0.7	18
13	Crystal structure, coloring problem and magnetism of Gd5â^'xZrxSi4. Dalton Transactions, 2011, 40, 4275.	1.6	18
14	Mn incorporation in CulnS2 chalcopyrites: Structure, magnetism and optical properties. Materials Chemistry and Physics, 2012, 136, 415-423.	2.0	16
15	Magnetic properties and magnetocaloric effect of Sc2CoSi2-type Gd2CoSi2 and Gd2CoGe2 compounds. Intermetallics, 2012, 21, 115-120.	1.8	16
16	Synthesis and optical study of GaP nanowires. Nanotechnology, 2004, 15, 1745-1748.	1.3	15
17	Site Preference of Metal Atoms in Gd _{5–} <i>xMxTt</i> ₄ (<i>M</i> = Zr, Hf;) Tj ETQq1	1 0.7843	14 rgBT /Over
18	Magnetic properties of CaCu5-type RNi3TSi (R=Gd and Tb, T=Mn, Fe, Co and Cu) compounds. Journal of Solid State Chemistry, 2015, 232, 150-156.	1.4	15

#	Article	IF	CITATIONS
19	diffraction study. Journal of Magnetism and Magnetic Materials, 2017, 442, 36-44.	1.0	15
20	Phase-separated Ce–Co–O catalysts for CO oxidation. International Journal of Hydrogen Energy, 2020, 45, 12777-12786.	3.8	15
21	Disorder-Controlled Electrical Properties in the Ho2Sb1–xBixO2 Systems. Chemistry of Materials, 2013, 25, 699-703.	3.2	14
22	Crystal structure and magnetism of Gd5â^'xEuxGe4. Journal of Alloys and Compounds, 2012, 534, 74-80.	2.8	13
23	The Gd-Co-Al system at 870/1070â€ ⁻ K as a representative of the rare earth-Co-Al family and new rare-earth cobalt aluminides: Crystal structure and magnetic properties. Journal of Solid State Chemistry, 2018, 261, 62-74.	1.4	13
24	Elucidating the reaction pathway of crystalline multi-metal borides for highly efficient oxygen-evolving electrocatalysts. Journal of Materials Chemistry A, 2022, 10, 1569-1578.	5.2	13
25	Electronically Induced Ferromagnetic Transitions inSm5Ge4-Type Magnetoresponsive Phases. Physical Review Letters, 2013, 110, 077204.	2.9	12
26	Rationally assembled nonanuclear lanthanide clusters: Dy ₉ displays slow relaxation of magnetization and Tb ₉ serves as luminescent sensor for Fe ³⁺ , CrO ₄ ^{2â^'} and Cr ₂ O ₇ ^{2â^'} . New Journal of Chemistry, 2019, 43, 19344-19354.	1.4	12
27	Dy–Co–Si system at 870/1070ÂK. Intermetallics, 2013, 41, 70-75.	1.8	11
28	Evolution from a single relaxation process to two-step relaxation processes of Dy2 single-molecule magnets via the modulations of the terminal solvent ligands. Dalton Transactions, 2021, 50, 217-228.	1.6	11
29	A benzothiadiazole-containing π-conjugated small molecule as promising element for nonvolatile multilevel resistive memory device. Journal of Solid State Chemistry, 2021, 294, 121850.	1.4	11
30	Crystal structure and magnetic properties of novel R3Co2.2Si1.8 compounds (R=Y, Gdâ€"Tm). Journal of Solid State Chemistry, 2012, 192, 371-376.	1.4	10
31	Suppression of antiferromagnetic interactions through Cu vacancies in Mn-substituted CulnSe ₂ chalcopyrites. Journal of Physics Condensed Matter, 2012, 24, 086006.	0.7	9
32	Crystal structure and magnetic properties of novel Hf3Ni2Si3-type R3Co2Ge3 compounds (R=Y, Sm,) Tj ETQq0	0 0 rgBT /0	Oveglock 10 Tf
33	Structural and magnetic properties of Fe2P-type RTTe compounds (R = Tb, Dy, Ho, Er, T = Fe, Co, Ru): Magnetic properties and specific features of magnetic entropy change. Journal of Solid State Chemistry, 2018, 258, 201-211.	1.4	9
34	Improved cycling stability of Ni-rich LiNi0.8Co0.1Mn0.1O ₂ cathode materials by optimizing Ti doping. Functional Materials Letters, 2021, 14, 2150002.	0.7	9
35	Effect of Minor Co Substitution for Fe on the Formability and Magnetic and Magnetocaloric Properties of the Amorphous Fe88Ce7B5 Alloy. Metals, 2022, 12, 589.	1.0	9
36	Magnetic entropy change and magnetocaloric effect of DyNiSi3, Dy2Ni3Si5, DyNiSi2 and HoNiSi0.33Ga67 antiferromagnets. Intermetallics, 2019, 107, 81-92.	1.8	8

#	Article	IF	CITATIONS
37	The Tb–Co-Ga system at 870â€ ⁻ K as a representative of rare-earth cobalt gallides: Crystal structure and magnetic properties. Journal of Solid State Chemistry, 2019, 277, 303-315.	1.4	8
38	Synthesis, Crystal Structure, and Electronic Properties of the Tetragonal (REIREII)3SbO3 Phases (REI =) Tj ETQq0 C	0.gBT/0	Dverlock 10 ⁻
39	Magnetic order and crystal structure study of YNi4Si-type NdNi4Si. Journal of Solid State Chemistry, 2015, 222, 123-128.	1.4	7
40	Mo2NiB2-type Sm2Co2Al and Sm2Co2Ga compounds: Magnetic properties and giant low-temperature coercivity. Journal of Solid State Chemistry, 2018, 260, 95-100.	1.4	7
41	Structure analysis and optical study of In–O–N nanospears. Nanotechnology, 2007, 18, 195604.	1.3	6
42	Magnetic structure of the La3NiGe2-type Tb3NiGe2 and Mn5Si3-type Tb5NixGe3â^'x (x=0 and 0.3). Journal of Magnetism and Magnetic Materials, 2012, 324, 2977-2982.	1.0	6
43	Investigation of catalyst-assisted growth of nonpolar GaN nanowires <i>via</i> a modified HVPE process. Nanoscale, 2020, 12, 4393-4399.	2.8	6
44	Magnetic ordering of anti-Th3P4-type R4X3 and Th3P4-type R3X4 compounds (RÂ=ÂCe, Pr, Nd, Sm, XÂ=ÂGe, Sb,)	Ţį ĘTQq0	0 ₅ 0 rgBT /O
45	Dy–Mn–Si as a representative of family of â€ [*] Dy–Transition Metal–Si' systems: Its isothermal section empirical rProd. Type: FTPules and new rare-earth manganese silicides. Journal of Solid State Chemistry, 2013, 206, 199-208.	s, 1.4	5
46	Giant magnetic coercivity in orthorhombic YNi4Si-type SmNi4Si compound. Journal of Solid State Chemistry, 2015, 230, 249-253.	1.4	5
47	The structural and magnetic properties of the compound Tm ₅ Ge ₄ . RSC Advances, 2015, 5, 26850-26855.	1.7	5
48	Magnetic order of Y3NiSi3-type R3NiSi3 (R=Gd–DY) compounds. Journal of Magnetism and Magnetic Materials, 2016, 398, 141-147.	1.0	5
49	W 3 CoB 3 -type {Y, Gd - Ho} 3 Co 4â^'x Al x (x=0.5â^'1) rare earth compounds: Specific features of crystal structure and magnetic ordering. Journal of Solid State Chemistry, 2017, 251, 33-42.	1.4	5
50	Controllable conduction and hidden phase transitions revealed via vertical strain. Applied Physics Letters, 2019, 114, 252901.	1.5	5
51	Magnetic ordering of Ho6Co2Ga-type {Gd, Tb, Dy}6Co2.2Al0.8 and Tb6Co2Al compounds by magnetization and neutron diffraction study. Intermetallics, 2019, 113, 106588.	1.8	5
52	The Ce–Ni-Ga system at 670/870Ââ€∢K: Magnetic properties and heat capacity of ternary compounds. Journal of Solid State Chemistry, 2021, 294, 121895.	1.4	5
53	Coloring problem and magnetocaloric effect of Gd3Co2.2Si1.8. Journal of Alloys and Compounds, 2013, 550, 331-334.	2.8	4
54	Giant magnetic coercivity in CaCu5-type SmNi3TSi (T=Mn–Cu) solid solutions. Journal of Solid State Chemistry, 2015, 232, 213-220.	1.4	4

#	Article	IF	CITATIONS
55	Improved electrical and magnetic transport properties of La0.8Ba0.2MnO3 thin films by oxygen annealing. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	2.0	4
56	Low-temperature coercivity of Mo2NiB2-type Tb2Co2Ga and Tb2Co2Al-based solid solutions. Journal of Solid State Chemistry, 2019, 277, 406-414.	1.4	4
57	Lu14Co3In3-type Y14Co3Al3, Gd14Co3.2Al2.8, {Gd, Tb, Dy, Lu}14Ni3Al3 and {Tb, Dy}14Co3Al3 compounds: Crystal structure, magnetic properties and heat capacity. Journal of Magnetism and Magnetic Materials, 2019, 476, 317-324.	1.0	4
58	Single-ion magnet behavior of two pentacoordinate Coll complexes with a pincer ligand 2,6-bis(imidazo[1,5-a] pyridin-3-yl)pyridine. Structural Chemistry, 2020, 31, 547-555.	1.0	4
59	The Tb-Fe-Ga system at 870Ââ€∢K as a representative of rare-earth iron gallides: Crystal structure and magnetic properties. Journal of Solid State Chemistry, 2020, 290, 121482.	1.4	4
60	The Gd-Ni-Ga system at 870Ââ€∢K as a representative of rare-earth nickel gallides: Crystal structure and magnetic properties. Journal of Solid State Chemistry, 2022, 305, 122692.	1.4	4
61	Electron-Deficient Eu _{6.5} Gd _{0.5} Ge ₆ Intermetallic: A Layered Intergrowth Phase of the Gd ₅ Si ₄ - and FeB-Type Structures. Inorganic Chemistry, 2012, 51, 3172-3178.	1.9	3
62	New ternary Yb5Sb3-type R5PtX2 compounds (RÂ=ÂY, Gd and Er; XÂ=ÂSb and Bi) and their magnetic properties. Intermetallics, 2013, 34, 10-13.	1.8	3
63	Magnetic order of the La 3 NiGe 2 -type Ho 3 NiGe 2. Journal of Magnetism and Magnetic Materials, 2014, 360, 200-204.	1.0	3
64	A series of mononuclear lanthanide complexes constructed by Schiff base and \hat{l}^2 -diketonate ligands: synthesis, structures, magnetic and fluorescent properties. Polyhedron, 2020, 187, 114651.	1.0	3
65	Two-layer compounds in rare earth-{Fe, Co, Ni, Rh, Pd, Pt}-Te systems: crystal structure and magnetic properties. Journal of Solid State Chemistry, 2021, 295, 121923.	1.4	3
66	The exchange between anions and cations induced by coupled plasma and thermal annealing treatment for room-temperature ferromagnetism. Physical Chemistry Chemical Physics, 2022, 24, 7001-7006.	1.3	3
67	Self-Nucleated Nonpolar GaN Nanowires with Strong and Enhanced UV Luminescence. Crystal Growth and Design, 2022, 22, 4787-4793.	1.4	3
68	Giant magnetic coercivity in YNi4B-type SmNi3TB (T=Mn–Cu) solid solutions. Journal of Magnetism and Magnetic Materials, 2016, 419, 176-188.	1.0	2
69	Stoner-enhanced paramagnetism in tungsten tetraboride. Journal of Physics Condensed Matter, 2016, 28, 026005.	0.7	2
70	Magnetic ordering of Lu14Co3In3-type {Gd, Tb}14Ni3Al3 compounds by magnetization heat capacity and neutron diffraction study. Journal of Solid State Chemistry, 2019, 273, 199-206.	1.4	2
71	Magnetic ordering of Sm26Co11Ga6-type R26Co9-6Ga8-11 compounds (R = Gd–Ho, Tm). Journal of Solid State Chemistry, 2020, 283, 121162.	1.4	2
72	Sm26Co11Ga6-type R26{Co, Ni}6.5-9.4Ga10.5-7.6 compounds (R = Gd–Er): Crystal structure, magnetic ordering and heat capacity. Journal of Solid State Chemistry, 2021, 301, 122322.	1.4	2

#	Article	IF	CITATIONS
73	Composition-tunable magnetic properties of {Gd, Dy, Ho}6FeTe2, Ho6RuSb2 ternary compounds and Dy6FeSbBi, Dy6FeSbTe and Dy6FeBiTe quasiternary solid solutions. Physica B: Condensed Matter, 2022, 643, 414187.	1.3	2
74	Magnetic ordering and coercivity of {Y, Tb}Ni4Si, NdNi3TSi (T = Mn - Cu) and Sm1-xTbxNi3FeSi solid solutions. Journal of Solid State Chemistry, 2018, 265, 18-28.	1.4	1
75	Homoepitaxial growth of high-quality GaN nanoarrays for enhanced UV luminescence. CrystEngComm, 2022, 24, 2472-2478.	1.3	1
76	Magnetic ordering and magnetocalori effect of GdNiGa4, GdNi0.5Ga1.5 and GdNiGa. Journal of Solid State Chemistry, 2022, 311, 123118.	1.4	1
77	Crystal structure of yttrium gallium antimonide, Y ₅ Ga _{1.24} Sb _{2.77} . Zeitschrift Fur Kristallographie - New Crystal Structures, 2017, 232, 331-332.	0.1	0