Abdulrezzak Memon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2130192/publications.pdf

Version: 2024-02-01

567247 501174 31 924 15 28 citations h-index g-index papers 32 32 32 1104 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	CRISPR/Cas9 Mediated Genome Editing in Crop Plants. Turkish Journal of Agriculture: Food Science and Technology, 2022, 9, 2396-2400.	0.3	O
2	Bioremediation of Heavy Metals by Use of Bacteria. Turkish Journal of Agriculture: Food Science and Technology, 2022, 10, 134-141.	0.3	1
3	Aromatik Tıbbi Bitki olan Mentha x piperita L. ve Mentha pulegium L.â€`nin in vitro Kallus İndüksiyonu ve Mikroçoğaltım yoluyla Geliştirilmesi. Turkish Journal of Agriculture: Food Science and Technology, 2021, 9, 159-165.	0.3	1
4	Bitki Mikrop Etkileşiminin Sekonder Metabolitler Üzerindeki Etkisi. Turkish Journal of Agriculture: Food Science and Technology, 2021, 9, 281-287.	0.3	2
5	Metal Akümülatör Bitki olan Brassica nigra L.'nin in vitro Kallus İndüksiyonu ve Sürgün Gelişim Turkish Journal of Agriculture: Food Science and Technology, 2021, 9, 1993-1998.	^{li} o.3	O
6	Bitki Býyümesinde ve Gelişiminde Bitki Büyümesini Teşvik Eden Rizobakterinin (PGPR) Rolü: Toprak-İlişkisi. Turkish Journal of Agriculture: Food Science and Technology, 2020, 8, 2590-2602.	-Bitki	0
7	Expression of small GTPases in the roots and nodules of Medicago truncatula cv. Jemalong. Acta Botanica Croatica, 2019, 78, 1-8.	0.7	6
8	Characterization of differentially expressed genes to Cu stress in Brassica nigra by Arabidopsis genome arrays. Environmental Science and Pollution Research, 2019, 26, 299-311.	5. 3	14
9	Comparative transcriptome analysis of Zea mays in response to petroleum hydrocarbon stress. Environmental Science and Pollution Research, 2018, 25, 32660-32674.	5.3	17
10	The identification of genes associated with Pb and Cd response mechanism in Brassica juncea L. by using Arabidopsis expression array. Environmental and Experimental Botany, 2017, 139, 105-115.	4.2	18
11	Functional specialization of Arf paralogs in nodules of model legume, Medicago truncatula. Plant Growth Regulation, 2017, 81, 501-510.	3.4	2
12	Phytoremediation of petroleum hydrocarbons by using a freshwater fern species (i> Azolla filiculoides Lam. International Journal of Phytoremediation, 2016, 18, 467-476.	3.1	18
13	Evaluation of the phytoremediation capacity of Lemna minor L. incrude oil spiked cultures. Turkish Journal of Biology, 2015, 39, 479-484.	0.8	6
14	Phytoremediation potential of Landoltia punctata on petroleum hydrocarbons. Turkish Journal of Botany, 2015, 39, 23-29.	1.2	6
15	Identification of heat responsive genes in cotton. Biologia Plantarum, 2014, 58, 515-523.	1.9	11
16	Expression characteristics of <i>ARF1</i> and <i>SAR1</i> during development and the deâ€etiolation process. Plant Biology, 2012, 14, 24-32.	3.8	8
17	Legume small GTPases and their role in the establishment of symbiotic associations with <i>Rhizobium</i> >p Plant Signaling and Behavior, 2009, 4, 257-260.	2.4	12
18	Implications of metal accumulation mechanisms to phytoremediation. Environmental Science and Pollution Research, 2009, 16, 162-175.	5.3	320

#	Article	IF	CITATION
19	Bioenergy to save the world. Environmental Science and Pollution Research, 2008, 15, 196-204.	5.3	64
20	Comparative phylogenetic analysis of small GTP-binding genes of model legume plants and assessment of their roles in root nodules. Journal of Experimental Botany, 2008, 59, 3831-3844.	4.8	25
21	An efficient and rapid in vitro regeneration system for metal resistant cotton. Biologia Plantarum, 2005, 49, 415-417.	1.9	5
22	Recruitment to Golgi membranes of ADP-ribosylation factor 1 is mediated by the cytoplasmic domain of p23. EMBO Journal, 2001, 20, 6751-6760.	7.8	94
23	Novel aspects of the regulation of a cDNA (Arf1) from Chlamydomonas with high sequence identity to animal ADP-ribosylation factor 1. Plant Molecular Biology, 1995, 29, 567-577.	3.9	24
24	Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei. Plant Journal, 1993, 4, 399-402.	5.7	16
25	Identification of an ARF Type Low Molecular Mass GTP-Binding Protein in Pea (Pisum sativum). Biochemical and Biophysical Research Communications, 1993, 193, 809-813.	2.1	29
26	Inositol Trisphosphate Metabolism in Carrot (Daucus carota L.) Cells. Plant Physiology, 1989, 91, 477-480.	4.8	32
27	Inositol phospholipids activate plasma membrane ATPase in plants. Biochemical and Biophysical Research Communications, 1989, 162, 1295-1301.	2.1	59
28	Efficiency of K+Utilization by Barley Varieties: Activation of Pyruvate Kinase. Journal of Experimental Botany, 1985, 36, 79-90.	4.8	15
29	Efficiency of Potassium Utilization by Barley Varieties: The Role of Subcellular Compartmentation. Journal of Experimental Botany, 1985, 36, 1860-1876.	4.8	62
30	Regulation of K+ Influx in Barley. Plant Physiology, 1984, 74, 730-734.	4.8	42
31	Taxonomic character of plant species in absorbing and accumulating alkali and alkaline earth metals	3.7	13