
Assocâ€prof Mark A T Blaskovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2129977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesoporous Silica Nanoparticles Improve Oral Delivery of Antitubercular Bicyclic Nitroimidazoles. ACS Biomaterials Science and Engineering, 2022, 8, 4196-4206.	2.6	23
2	Rescuing Tetracycline Class Antibiotics for the Treatment of Multidrug-Resistant Acinetobacter baumannii Pulmonary Infection. MBio, 2022, 13, e0351721.	1.8	11
3	Understanding the relationship between solubility and permeability of Î ³ -cyclodextrin-based systems embedded with poorly aqueous soluble benznidazole. International Journal of Pharmaceutics, 2022, 616, 121487.	2.6	11
4	Application of antibiotic-derived fluorescent probes to bacterial studies. Methods in Enzymology, 2022, 665, 1-28.	0.4	3
5	Bridging informatics and medicinal inorganic chemistry: Toward a database of metallodrugs and metallodrug candidates. Drug Discovery Today, 2022, 27, 1420-1430.	3.2	16
6	Featured Article Editorial: Discovery of a Tricyclic β-Lactam Active against Carbapenem-Resistant Enterobacterales. ACS Infectious Diseases, 2022, 8, 398-398.	1.8	1
7	Antimicrobial Activity Enhancers: Towards Smart Delivery of Antimicrobial Agents. Antibiotics, 2022, 11, 412.	1.5	37
8	Nanomaterials: The New Antimicrobial Magic Bullet. ACS Infectious Diseases, 2022, 8, 693-712.	1.8	28
9	Mechanisms Underlying Synergistic Killing of Polymyxin B in Combination with Cannabidiol against Acinetobacter baumannii: A Metabolomic Study. Pharmaceutics, 2022, 14, 786.	2.0	11
10	Amino Alcohols as Potential Antibiotic and Antifungal Leads. Molecules, 2022, 27, 2050.	1.7	3
11	Investigations into the membrane activity of arenicin antimicrobial peptide AA139. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130156.	1.1	4
12	Loss of β-Ketoacyl Acyl Carrier Protein Synthase III Activity Restores Multidrug-Resistant Escherichia coli Sensitivity to Previously Ineffective Antibiotics. MSphere, 2022, 7, e0011722.	1.3	7
13	Leveraging the potential of silver nanoparticles-based materials towards sustainable water treatment. Journal of Environmental Management, 2022, 319, 115675.	3.8	33
14	Antimicrobial and Anticancer Properties of Synthetic Peptides Derived from the Wasp <i>Parachartergus fraternus</i> . ChemBioChem, 2021, 22, 1415-1423.	1.3	7
15	Nontoxic Cobalt(III) Schiff Base Complexes with Broadâ€Spectrum Antifungal Activity. Chemistry - A European Journal, 2021, 27, 2021-2029.	1.7	28
16	Formulation of Quaternized Aminated Chitosan Nanoparticles for Efficient Encapsulation and Slow Release of Curcumin. Molecules, 2021, 26, 449.	1.7	50
17	Engineering mesoporous silica nanoparticles towards oral delivery of vancomycin. Journal of Materials Chemistry B, 2021, 9, 7145-7166.	2.9	23
18	Supercritical carbon dioxide assisted complexation of benznidazole: γ-cyclodextrin for improved dissolution. International Journal of Pharmaceutics, 2021, 596, 120240.	2.6	13

#	Article	IF	CITATIONS
19	Bio-Potency and Molecular Docking Studies of Isolated Compounds from Grewia optiva J.R. Drumm. ex Burret. Molecules, 2021, 26, 2019.	1.7	5
20	<i>In Vitro</i> Activity of Vancapticin MCC5145 against Methicillin-Resistant Staphylococcus aureus from Periprosthetic Joint Infection. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	2
21	Syzygium cumini(L.),Skeels fruit extracts: In vitro and in vivo anti-inflammatory properties. Journal of Ethnopharmacology, 2021, 271, 113805.	2.0	40
22	Chemical Synthesis of TFF3 Reveals Novel Mechanistic Insights and a Gut-Stable Metabolite. Journal of Medicinal Chemistry, 2021, 64, 9484-9495.	2.9	8
23	Virtual Issue: Anti-infective Discovery Down Under. ACS Infectious Diseases, 2021, 7, 1555-1557.	1.8	1
24	There is no market for new antibiotics:Âthis allows an open approach toÂresearchÂandÂdevelopment. Wellcome Open Research, 2021, 6, 146.	0.9	27
25	Platinum Cyclooctadiene Complexes with Activity against Gramâ€positive Bacteria. ChemMedChem, 2021, 16, 3165-3171.	1.6	23
26	Antimicrobial screening of a historical collection of over 140 000 small molecules. Mendeleev Communications, 2021, 31, 484-487.	0.6	8
27	The Antimicrobial Resistance Crisis: An Inadvertent, Unfortunate but Nevertheless Informative Experiment in Evolutionary Biology. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	3
28	Targeted Protein Degradation: The New Frontier of Antimicrobial Discovery?. ACS Infectious Diseases, 2021, 7, 2050-2067.	1.8	11
29	Antibiotic Alternatives Special Issue. ACS Infectious Diseases, 2021, 7, 2025-2026.	1.8	1
30	Serum Complement Activation by C4BP-IgM Fusion Protein Can Restore Susceptibility to Antibiotics in Neisseria gonorrhoeae. Frontiers in Immunology, 2021, 12, 726801.	2.2	3
31	Design, synthesis and screening of a drug discovery library based on an Eremophila-derived serrulatane scaffold. Phytochemistry, 2021, 190, 112887.	1.4	4
32	Instructive analysis of engineered carbon materials for potential application in water and wastewater treatment. Science of the Total Environment, 2021, 793, 148583.	3.9	28
33	The antimicrobial potential of cannabidiol. Communications Biology, 2021, 4, 7.	2.0	118
34	CryoEM structure of the outer membrane secretin channel pIV from the f1 filamentous bacteriophage. Nature Communications, 2021, 12, 6316.	5.8	17
35	Biostimulation of Bacteria in Liquid Culture for Identification of New Antimicrobial Compounds. Pharmaceuticals, 2021, 14, 1232.	1.7	3
36	Loss of YhcB results in dysregulation of coordinated peptidoglycan, LPS and phospholipid synthesis during Escherichia coli cell growth. PLoS Genetics, 2021, 17, e1009586.	1.5	16

#	Article	IF	CITATIONS
37	Hydroxyl substituted benzoic acid/cinnamic acid derivatives: Tyrosinase inhibitory kinetics, anti-melanogenic activity and molecular docking studies. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126722.	1.0	40
38	Lightâ€Activated Rhenium Complexes with Dual Mode of Action against Bacteria. Chemistry - A European Journal, 2020, 26, 2852-2858.	1.7	34
39	Tyrosinase inhibitors as potential antibacterial agents. European Journal of Medicinal Chemistry, 2020, 187, 111892.	2.6	55
40	Call for Papers: Antibiotic Alternatives Special Issue. ACS Infectious Diseases, 2020, 6, 2812-2812.	1.8	1
41	Repurposing a neurodegenerative disease drug to treat Gram-negative antibiotic-resistant bacterial sepsis. Science Translational Medicine, 2020, 12, .	5.8	36
42	Multi-Institution Research and Education Collaboration Identifies New Antimicrobial Compounds. ACS Chemical Biology, 2020, 15, 3187-3196.	1.6	3
43	Fluorescent macrolide probes – synthesis and use in evaluation of bacterial resistance. RSC Chemical Biology, 2020, 1, 395-404.	2.0	28
44	Antitubercular and Antiparasitic 2-Nitroimidazopyrazinones with Improved Potency and Solubility. Journal of Medicinal Chemistry, 2020, 63, 15726-15751.	2.9	17
45	How to Stimulate and Facilitate Early Stage Antibiotic Discovery. ACS Infectious Diseases, 2020, 6, 1302-1304.	1.8	18
46	An amphipathic peptide with antibiotic activity against multidrug-resistant Gram-negative bacteria. Nature Communications, 2020, 11, 3184.	5.8	105
47	Antibiotics Special Issue: Challenges and Opportunities in Antibiotic Discovery and Development. ACS Infectious Diseases, 2020, 6, 1286-1288.	1.8	26
48	Visualization of Bacterial Resistance using Fluorescent Antibiotic Probes. Journal of Visualized Experiments, 2020, , .	0.2	3
49	Flow-cytometry detection of fluorescent magnetic nanoparticle clusters increases sensitivity of dengue immunoassay. Analytica Chimica Acta, 2020, 1107, 85-91.	2.6	9
50	Evaluating the genome and resistome of extensively drug-resistant Klebsiella pneumoniae using native DNA and RNA Nanopore sequencing. GigaScience, 2020, 9, .	3.3	22
51	Metal complexes as a promising source for new antibiotics. Chemical Science, 2020, 11, 2627-2639.	3.7	290
52	Chemical synthesis of human trefoil factor 1 (TFF1) and its homodimer provides novel insights into their mechanisms of action. Chemical Communications, 2020, 56, 6420-6423.	2.2	8
53	Complete Genome Sequences of Clinical Pandoraea fibrosis Isolates. Microbiology Resource Announcements, 2020, 9, .	0.3	1
54	Discovery of Cephalosporin-3′-Diazeniumdiolates That Show Dual Antibacterial and Antibiofilm Effects against <i>Pseudomonas aeruginosa</i> Clinical Cystic Fibrosis Isolates and Efficacy in a Murine Respiratory Infection Model. ACS Infectious Diseases, 2020, 6, 1460-1479.	1.8	18

#	Article	IF	CITATIONS
55	Formulation technologies and advances for oral delivery of novel nitroimidazoles and antimicrobial peptides. Journal of Controlled Release, 2020, 324, 728-749.	4.8	22
56	Solid-Phase Synthesis of Octapeptin Lipopeptides. Methods in Molecular Biology, 2020, 2103, 199-213.	0.4	1
57	1255. <i>In Vitro</i> Activity of Vancapticin against Methicillin-Resistant <i>Staphylococcus aureus</i> from Periprosthetic Joint Infection. Open Forum Infectious Diseases, 2020, 7, S645-S645.	0.4	0
58	Call for Papers: Antibiotics Special Issue. ACS Infectious Diseases, 2019, 5, 1264-1264.	1.8	0
59	Quinolone antibiotics. MedChemComm, 2019, 10, 1719-1739.	3.5	383
60	In vitro Antimicrobial Activity of Acne Drugs Against Skin-Associated Bacteria. Scientific Reports, 2019, 9, 14658.	1.6	47
61	Non-antibiotic Small-Molecule Regulation of DHFR-Based Destabilizing Domains InÂVivo. Molecular Therapy - Methods and Clinical Development, 2019, 15, 27-39.	1.8	13
62	Structure-Function Studies of Polymyxin B Lipononapeptides. Molecules, 2019, 24, 553.	1.7	26
63	Fluoroquinolone-derived fluorescent probes for studies of bacterial penetration and efflux. MedChemComm, 2019, 10, 901-906.	3.5	26
64	Elucidating the Lipid Binding Properties of Membrane-Active Peptides Using Cyclised Nanodiscs. Frontiers in Chemistry, 2019, 7, 238.	1.8	19
65	Octapeptin C4 and polymyxin resistance occur via distinct pathways in an epidemic XDR <i>Klebsiella pneumoniae</i> ST258 isolate. Journal of Antimicrobial Chemotherapy, 2019, 74, 582-593.	1.3	16
66	Effects of Microplate Type and Broth Additives on Microdilution MIC Susceptibility Assays. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	41
67	The Eagle Effect and Antibiotic-Induced Persistence: Two Sides of the Same Coin?. Trends in Microbiology, 2019, 27, 339-354.	3.5	40
68	The diminished antimicrobial pipeline. Microbiology Australia, 2019, 40, 92.	0.1	4
69	Antibiotic-derived molecular probes for bacterial imaging. , 2019, , .		7
70	Fluorescent Antibiotics: New Research Tools to Fight Antibiotic Resistance. Trends in Biotechnology, 2018, 36, 523-536.	4.9	92
71	Structure, Function, and Biosynthetic Origin of Octapeptin Antibiotics Active against Extensively Drug-Resistant Gram-Negative Bacteria. Cell Chemical Biology, 2018, 25, 380-391.e5.	2.5	57
72	Developments in Glycopeptide Antibiotics. ACS Infectious Diseases, 2018, 4, 715-735.	1.8	185

#	Article	IF	CITATIONS
73	Protein-inspired antibiotics active against vancomycin- and daptomycin-resistant bacteria. Nature Communications, 2018, 9, 22.	5.8	111
74	A template guided approach to generating cell permeable inhibitors of Staphylococcus aureus biotin protein ligase. Tetrahedron, 2018, 74, 1175-1183.	1.0	4
75	Multifactorial chromosomal variants regulate polymyxin resistance in extensively drug-resistant Klebsiella pneumoniae. Microbial Genomics, 2018, 4, .	1.0	39
76	Design, Synthesis, and Biological Evaluation of 2-Nitroimidazopyrazin-one/-es with Antitubercular and Antiparasitic Activity. Journal of Medicinal Chemistry, 2018, 61, 11349-11371.	2.9	22
77	Antimicrobial Silver in Medicinal and Consumer Applications: A Patent Review of the Past Decade (2007–2017). Antibiotics, 2018, 7, 93.	1.5	240
78	Silver bullets: A new lustre on an old antimicrobial agent. Biotechnology Advances, 2018, 36, 1391-1411.	6.0	118
79	The Fight Against Antimicrobial Resistance Is Confounded by a Global Increase in Antibiotic Usage. ACS Infectious Diseases, 2018, 4, 868-870.	1.8	32
80	Detection and Investigation of Eagle Effect Resistance to Vancomycin in Clostridium difficile With an ATP-Bioluminescence Assay. Frontiers in Microbiology, 2018, 9, 1420.	1.5	21
81	Can octapeptin antibiotics combat extensively drug-resistant (XDR) bacteria?. Expert Review of Anti-Infective Therapy, 2018, 16, 485-499.	2.0	16
82	Antibiotics in the clinical pipeline at the end of 2015. Journal of Antibiotics, 2017, 70, 3-24.	1.0	289
83	Synthesis of octapeptin C4 and biological profiling against NDM-1 and polymyxin-resistant bacteria. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2407-2409.	1.0	16
84	Nitroimidazoles: Molecular Fireworks That Combat a Broad Spectrum of Infectious Diseases. Journal of Medicinal Chemistry, 2017, 60, 7636-7657.	2.9	116
85	Institutional profile: Community for Open Antimicrobial Drug Discovery – crowdsourcing new antibiotics and antifungals. Future Science OA, 2017, 3, FSO171.	0.9	19
86	From Breast Cancer to Antimicrobial: Combating Extremely Resistant Gram-Negative "Superbugs―Using Novel Combinations of Polymyxin B with Selective Estrogen Receptor Modulators. Microbial Drug Resistance, 2017, 23, 640-650.	0.9	45
87	Surface Ligand Density of Antibiotic-Nanoparticle Conjugates Enhances Target Avidity and Membrane Permeabilization of Vancomycin-Resistant Bacteria. Bioconjugate Chemistry, 2017, 28, 353-361.	1.8	23
88	Enhancement of antibiotic-activity through complexation with metal ions - Combined ITC, NMR, enzymatic and biological studies. Journal of Inorganic Biochemistry, 2017, 167, 134-141.	1.5	43
89	Structure–Activity and â^'Toxicity Relationships of the Antimicrobial Peptide Tachyplesin-1. ACS Infectious Diseases, 2017, 3, 917-926.	1.8	70
90	Investigating the Interaction of Octapeptin A3 with Model Bacterial Membranes. ACS Infectious Diseases, 2017, 3, 606-619.	1.8	25

#	Article	IF	CITATIONS
91	Polishing the tarnished silver bullet: the quest for new antibiotics. Essays in Biochemistry, 2017, 61, 103-114.	2.1	58
92	Chemical philanthropy: a path forward for antibiotic discovery?. Future Medicinal Chemistry, 2016, 8, 925-929.	1.1	23
93	Short cationic lipopeptides as effective antibacterial agents: Design, physicochemical properties and biological evaluation. Bioorganic and Medicinal Chemistry, 2016, 24, 2235-2241.	1.4	24
94	Nitroimidazole carboxamides as antiparasitic agents targeting Giardia lamblia, Entamoeba histolytica and Trichomonas vaginalis. European Journal of Medicinal Chemistry, 2016, 120, 353-362.	2.6	47
95	Contribution of Amphipathicity and Hydrophobicity to the Antimicrobial Activity and Cytotoxicity of β-Hairpin Peptides. ACS Infectious Diseases, 2016, 2, 442-450.	1.8	191
96	Discovery of functionally selective C5aR2 ligands: novel modulators of C5a signalling. Immunology and Cell Biology, 2016, 94, 787-795.	1.0	68
97	Unusual Amino Acids in Medicinal Chemistry. Journal of Medicinal Chemistry, 2016, 59, 10807-10836.	2.9	386
98	Fluorescent Trimethoprim Conjugate Probes To Assess Drug Accumulation in Wild Type and Mutant <i>Escherichia coli</i> . ACS Infectious Diseases, 2016, 2, 688-701.	1.8	45
99	Old dogs and new tricks in antimicrobial discovery. Current Opinion in Microbiology, 2016, 33, 25-34.	2.3	14
100	Activity and Predicted Nephrotoxicity of Synthetic Antibiotics Based on Polymyxin B. Journal of Medicinal Chemistry, 2016, 59, 1068-1077.	2.9	94
101	Evaluation of biomarkers for in vitro prediction of drugâ€induced nephrotoxicity: comparison of <scp>HK</scp> â€2, immortalized human proximal tubule epithelial, and primary cultures of human proximal tubular cells. Pharmacology Research and Perspectives, 2015, 3, e00148.	1.1	59
102	<i>Clostridium difficile</i> Drug Pipeline: Challenges in Discovery and Development of New Agents. Journal of Medicinal Chemistry, 2015, 58, 5164-5185.	2.9	99
103	Helping Chemists Discover New Antibiotics. ACS Infectious Diseases, 2015, 1, 285-287.	1.8	176
104	Clostridium difficile Infection: Current and Emerging Therapeutics. Current Treatment Options in Infectious Diseases, 2015, 7, 317-334.	0.8	2
105	Mucin Binding Reduces Colistin Antimicrobial Activity. Antimicrobial Agents and Chemotherapy, 2015, 59, 5925-5931.	1.4	82
106	Metronidazole-triazole conjugates: Activity against Clostridium difficile and parasites. European Journal of Medicinal Chemistry, 2015, 101, 96-102.	2.6	48
107	A new antibiotic with potent activity targets MscL. Journal of Antibiotics, 2015, 68, 453-462.	1.0	46
108	Self-assembling lipopeptides with a potent activity against Gram-positive bacteria, including multidrug resistant strains. Nanomedicine, 2015, 10, 3359-3371.	1.7	9

#	Article	IF	CITATIONS
109	Cell- and biomarker-based assays for predicting nephrotoxicity. Expert Opinion on Drug Metabolism and Toxicology, 2014, 10, 1621-1635.	1.5	44
110	Anti-cooperative ligand binding and dimerisation in the glycopeptide antibiotic dalbavancin. Organic and Biomolecular Chemistry, 2014, 12, 2568-2575.	1.5	26
111	Glycopeptide antibiotics: Back to the future. Journal of Antibiotics, 2014, 67, 631-644.	1.0	221
112	An azido-oxazolidinone antibiotic for live bacterial cell imaging and generation of antibiotic variants. Bioorganic and Medicinal Chemistry, 2014, 22, 4490-4498.	1.4	37
113	Antibacterial serrulatane diterpenes from the Australian native plant Eremophila microtheca. Phytochemistry, 2013, 93, 162-169.	1.4	48
114	Antibiotics in the clinical pipeline in 2013. Journal of Antibiotics, 2013, 66, 571-591.	1.0	348
115	Lipoamino Acids as Major Components of Absorption Promoters in Drug Delivery. Current Topics in Medicinal Chemistry, 2012, 12, 1562-1580.	1.0	18
116	Resolving Biofilm Infections: Current Therapy and Drug Discovery Strategies. Current Drug Targets, 2012, 13, 1375-1385.	1.0	21
117	Drug Discovery and Protein Tyrosine Phosphatases. Current Medicinal Chemistry, 2009, 16, 2095-2176.	1.2	98
118	A Convenient Reduction of α-Amino Acids to 1,2-Amino Alcohols With Retention of Optical Purity. Open Organic Chemistry Journal, 2008, 2, 107-109.	0.9	2
119	A Convenient Reduction of α-Amino Acids to 1,2-Amino Alcohols With Retention of Optical Purity~!2008-08-29~!2008-10-16~!2008-11-28~!. Open Organic Chemistry Journal, 2008, 2, 107-109.	0.9	2
120	Design and synthesis of phosphotyrosine mimetics. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2083-2085.	1.0	17
121	Recent discovery and development of protein tyrosine phosphatase inhibitors. Expert Opinion on Therapeutic Patents, 2002, 12, 871-905.	2.4	61
122	Highly efficient and versatile construction of secondary structure peptide mimetic libraries: Application to biology and drug development. , 2002, , 191-193.		0
123	Synthesis of enantiomerically enriched β,γ-unsaturated-α-amino acids. Tetrahedron, 2001, 57, 1497-1507.	1.0	28
124	Stereoselective Synthesis of β-Substituted α,β-Diamino Acids from β-Hydroxy Amino Acids. Journal of Organic Chemistry, 1999, 64, 6106-6111.	1.7	39
125	Solid-Phase Preparation of Dienes. Journal of Organic Chemistry, 1998, 63, 1119-1125.	1.7	39
126	Stereoselective Synthesis ofThreoandErythroβ-Hydroxy and β-Disubstituted-β-Hydroxy α-Amino Acids. Journal of Organic Chemistry, 1998, 63, 3631-3646.	1.7	83

#	Article	IF	CITATIONS
127	Regiocontrol in alkylations of α-Silyl hydrazones. Tetrahedron Letters, 1998, 39, 3617-3620.	0.7	7
128	Highly efficient and versatile synthesis of libraries of constrained β-strand mimetics. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 2321-2326.	1.0	50
129	Polymer-Supported Acetylide Addition to Hexa-2,4-dienal. Synthesis, 1998, 1998, 965-966.	1.2	0
130	Mild Conditions for Oxazolidin-5-one Formation. Synthesis, 1998, 1998, 379-380.	1.2	5
131	Stereoselective synthesis of allo-threonine and \hat{I}^2 -2H-allo-threonine from threonine. Tetrahedron Letters, 1993, 34, 3837-3840.	0.7	22
132	Synthesis of a chiral serine aldehyde equivalent and its conversion to chiral .alphaamino acid derivatives. Journal of the American Chemical Society, 1993, 115, 5021-5030.	6.6	98
133	Simple and convenient synthesis of tert-butyl ethers of Fmoc-serine, Fmoc-threonine, and Fmoc-tyrosine. Journal of Organic Chemistry, 1991, 56, 3447-3449.	1.7	32
134	Fast bacterial growth reduces antibiotic accumulation and efficacy. ELife, 0, 11, .	2.8	32