Young-Jun Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2129480/publications.pdf

Version: 2024-02-01

55	5,790 citations	304368 22 h-index	205818 48 g-index
papers	Citations	II-IIIQEX	g-muex
55 all docs	55 docs citations	55 times ranked	10494 citing authors

#	Article	IF	CITATIONS
1	Tuning the Graphene Work Function by Electric Field Effect. Nano Letters, 2009, 9, 3430-3434.	4.5	1,255
2	Flexible and Transparent MoS ₂ Field-Effect Transistors on Hexagonal Boron Nitride-Graphene Heterostructures. ACS Nano, 2013, 7, 7931-7936.	7.3	947
3	Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO ₂ Substrate. Nano Letters, 2010, 10, 4944-4951.	4.5	706
4	Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nature Communications, 2013, 4, 1624.	5.8	595
5	Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Applied Physics Letters, 2011, 99, .	1.5	425
6	Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nature Nanotechnology, 2011, 6, 126-132.	15.6	360
7	Singleâ€Gate Bandgap Opening of Bilayer Graphene by Dual Molecular Doping. Advanced Materials, 2012, 24, 407-411.	11.1	228
8	Water-Gated Charge Doping of Graphene Induced by Mica Substrates. Nano Letters, 2012, 12, 648-654.	4.5	166
9	Tunable Electrical and Optical Characteristics in Monolayer Graphene and Few-Layer MoS ₂ Heterostructure Devices. Nano Letters, 2015, 15, 5017-5024.	4.5	150
10	Flexible and Transparent Gas Molecule Sensor Integrated with Sensing and Heating Graphene Layers. Small, 2014, 10, 3685-3691.	5.2	142
11	Thickness-dependent Schottky barrier height of MoS ₂ field-effect transistors. Nanoscale, 2017, 9, 6151-6157.	2.8	120
12	Epitaxial Growth of Thin Ferroelectric Polymer Films on Graphene Layer for Fully Transparent and Flexible Nonvolatile Memory. Nano Letters, 2016, 16, 334-340.	4.5	117
13	Electrically integrated SU-8 clamped graphene drum resonators for strain engineering. Applied Physics Letters, 2013, 102, 153101.	1.5	67
14	Organic Field Effect Transistors Based on Graphene and Hexagonal Boron Nitride Heterostructures. Advanced Functional Materials, 2014, 24, 5157-5163.	7.8	64
15	High-resolution spatial mapping of the temperature distribution of a Joule self-heated graphene nanoribbon. Applied Physics Letters, 2011, 99, .	1.5	62
16	Layer number identification of CVD-grown multilayer graphene using Si peak analysis. Scientific Reports, 2018, 8, 571.	1.6	50
17	Graphene-based plasmonic photodetector for photonic integrated circuits. Optics Express, 2014, 22, 803.	1.7	45
18	Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes. Nanotechnology, 2013, 24, 075202.	1.3	31

#	Article	IF	CITATIONS
19	Reliable seawater battery anode: controlled sodium nucleation <i>via</i> deactivation of the current collector surface. Journal of Materials Chemistry A, 2018, 6, 19672-19680.	5.2	30
20	Gas molecule sensing of van der Waals tunnel field effect transistors. Nanoscale, 2017, 9, 18644-18650.	2.8	29
21	Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: Dependence of tip apex angle. Optics Communications, 2006, 267, 264-270.	1.0	27
22	Epitaxially Selfâ€Assembled Alkane Layers for Graphene Electronics. Advanced Materials, 2017, 29, 1603925.	11.1	24
23	Systematic Design and Demonstration of Multiâ€Bit Generation in Layered Materials Heterostructures Floatingâ€Gate Memory. Advanced Functional Materials, 2021, 31, 2105472.	7.8	19
24	Facile fabrication of properties-controllable graphene sheet. Scientific Reports, 2016, 6, 24525.	1.6	16
25	Temperature-Dependent Resonance Energy Transfer from Semiconductor Quantum Wells to Graphene. Nano Letters, 2015, 15, 896-902.	4.5	12
26	High-resolution near-field spectroscopy of InAs single quantum dots at 70 K. Applied Physics Letters, 2003, 83, 3024-3026.	1.5	11
27	Facile Dry Surface Cleaning of Graphene by UV Treatment. Journal of the Korean Physical Society, 2018, 72, 1045-1051.	0.3	10
28	Near-field spectroscopy of bimodal size distribution of InAsâ^AlGaAs single quantum dots. Applied Physics Letters, 2005, 87, 143108.	1.5	9
29	Direct Mapping of the Gate Response of a Multilayer WSe2/MoS2 Heterostructure with Locally Different Degrees of Charge Depletion. Journal of Physical Chemistry Letters, 2019, 10, 4010-4016.	2.1	9
30	Flexible Electronics: Flexible and Transparent Gas Molecule Sensor Integrated with Sensing and Heating Graphene Layers (Small 18/2014). Small, 2014, 10, 3812-3812.	5.2	7
31	Electrochemical Doping of Graphene with H2SO4 Electrolyte. Journal of the Korean Physical Society, 2019, 74, 132-135.	0.3	7
32	Gate-Tuned Gas Molecule Sensitivity of a Two-Dimensional Semiconductor. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 23617-23623.	4.0	7
33	Near-field optical study of highly dense laterally coupled InAs single quantum dots. Applied Physics Letters, 2007, 91, .	1.5	5
34	Self-assembled (In1â^'xMnx)As diluted magnetic semiconductor quantum dots with high Tc. Current Applied Physics, 2004, 4, 213-216.	1.1	3
35	Convection-based realtime polymerase chain reaction (PCR) utilizing transparent graphene heaters. , 2014, , .		3
36	Infrared study of large scale h-BN film and graphene/h-BN heterostructure. Applied Physics Letters, 2016, 108, 241910.	1.5	3

#	Article	IF	CITATIONS
37	Transparent conducting films of silver hybrid films formed by near-field electrospinning. Materials Letters, 2016, 185, 139-142.	1.3	3
38	Graphene laminated Cu nanoparticle arrays by spontaneous formation through dewetting. Journal of Industrial and Engineering Chemistry, 2018, 64, 367-372.	2.9	3
39	Gate-tuned conductance of graphene-ribbon junctions with nanoscale width variations. Nanoscale, 2019, 11, 4735-4742.	2.8	3
40	Current Tunneling Characterization of Oxidized Black Phosphorus by Graphite Thin Film Electrodes. Applied Science and Convergence Technology, 2021, 30, 78-80.	0.3	3
41	Redox Reaction Investigation of Graphene Nanoribbon. Applied Science and Convergence Technology, 2018, 27, 35-37.	0.3	3
42	Incident Polarization Independence of Topographic Artifacts in Scattering-Type Near-Field Microscopy. Japanese Journal of Applied Physics, 2008, 47, 4839-4842.	0.8	2
43	Near-field optical observation of electric-field-induced fluorescence switching in laterally coupled quantum dots. Physical Review B, 2010, 82, .	1.1	2
44	Graphene-based photonic waveguide devices. Proceedings of SPIE, 2014, , .	0.8	2
45	Surface and Electrical Characterization of Electrochemically Oxidized Graphene. Applied Science and Convergence Technology, 2019, 28, 51-54.	0.3	2
46	Position Dependent Resistance and Doping Condition on a Graphene Flake. Applied Science and Convergence Technology, 2020, 29, 180-182.	0.3	2
47	Near-Field Photoluminescence Study of InAs/AlGaAs Quantum-Dot-Based Nanoclusters: Band-Filling Effect. Japanese Journal of Applied Physics, 2006, 45, 656-659.	0.8	1
48	Direct Diagnosis of the Position of Electric Failure on a Graphene Nanoribbon by using Scanning Thermal Microscopy. Journal of the Korean Physical Society, 2020, 76, 727-730.	0.3	1
49	Charge Carrier Density Tuning of Graphene by Water Gating. Applied Science and Convergence Technology, 2019, 28, 226-228.	0.3	1
50	Surface Condition and Conductance of Graphene in Redox Process. Applied Science and Convergence Technology, 2021, 30, 183-185.	0.3	1
51	Near-field spectroscopy of InAs single quantum dots at 70 K. , 2003, , .		0
52	Band-edge exciton transitions temperature in multiple stacked self-assembled (In1â^'xMnx)As quantum dot arrays. Solid State Communications, 2005, 136, 81-84.	0.9	0
53	Near-field spectroscopy and microscopy of InAs single quantum dots. , 2007, , .		0
54	Spatially Resolved Electric and Thermal Properties Study of Graphene Field Effect Devices. , 2011, , .		0

Young-Jun Yu

#	Article	IF	CITATIONS
55	Systematic Design and Demonstration of Multiâ€Bit Generation in Layered Materials Heterostructures Floatingâ€Gate Memory (Adv. Funct. Mater. 43/2021). Advanced Functional Materials, 2021, 31, 2170317.	7.8	0