Paola Montoro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2129228/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. Journal of Chromatography A, 2009, 1216, 2002-2032.	3.7	473
2	Structure?antioxidant activity relationships of flavonoids isolated from different plant species. Food Chemistry, 2005, 92, 349-355.	8.2	160
3	Metabolic profiling of roots of liquorice (Glycyrrhiza glabra) from different geographical areas by ESI/MS/MS and determination of major metabolites by LC-ESI/MS and LC-ESI/MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54, 535-544.	2.8	142
4	Stability and antioxidant activity of polyphenols in extracts of Myrtus communis L. berries used for the preparation of myrtle liqueur. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41, 1614-1619.	2.8	109
5	YuccaschidigeraBark:Â Phenolic Constituents and Antioxidant Activity. Journal of Natural Products, 2004, 67, 882-885.	3.0	86
6	Screening of the topical anti-inflammatory activity of the bark of Acacia cornigera Willdenow, Byrsonima crassifolia Kunth, Sweetia panamensis Yakovlev and the leaves of Sphagneticola trilobata Hitchcock. Journal of Ethnopharmacology, 2009, 122, 430-433.	4.1	73
7	Characterisation by liquid chromatography-electrospray tandem mass spectrometry of anthocyanins in extracts of Myrtus communis L. berries used for the preparation of myrtle liqueur. Journal of Chromatography A, 2006, 1112, 232-240.	3.7	72
8	Phytochemical composition of Potentilla anserina L. analyzed by an integrative GC-MS and LC-MS metabolomics platform. Metabolomics, 2013, 9, 599-607.	3.0	70
9	â€~ <i>Moringa oleifera</i> : study of phenolics and glucosinolates by mass spectrometry'. Journal of Mass Spectrometry, 2014, 49, 900-910.	1.6	68
10	Antioxidant activity, cytotoxic activity and metabolic profiling of juices obtained from saffron (Crocus sativus L.) floral by-products. Food Chemistry, 2016, 199, 18-27.	8.2	64
11	Identiï¬cation by HPLC-PAD-MS and quantiï¬cation by HPLC-PAD of phenylethanoid glycosides of fivePhlomisspecies. Phytochemical Analysis, 2005, 16, 1-6.	2.4	62
12	Gloriosaols A and B, two novel phenolics from Yucca gloriosa: structural characterization and configurational assignment by a combined NMR-quantum mechanical strategy. Tetrahedron, 2007, 63, 148-154.	1.9	55
13	Radical Scavenging Activity and LCâ€MS Metabolic Profiling of Petals, Stamens, and Flowers of <i>Crocus sativus</i> L. Journal of Food Science, 2012, 77, C893-900.	3.1	54
14	Metabolic fingerprinting using direct flow injection electrospray ionization tandem mass spectrometry for the characterization of proanthocyanidins from the barks ofHancornia speciosa. Rapid Communications in Mass Spectrometry, 2007, 21, 1907-1914.	1.5	51
15	Relative effects of phenolic constituents from Yucca schidigera Roezl. bark on Kaposi's sarcoma cell proliferation, migration, and PAF synthesis. Biochemical Pharmacology, 2006, 71, 1479-1487.	4.4	49
16	Flavonoid characterization and antioxidant activity of hydroalcoholic extracts from Achillea ligustica All Journal of Pharmaceutical and Biomedical Analysis, 2009, 50, 440-448.	2.8	48
17	Strong antioxidant phenolics from Acacia nilotica: Profiling by ESI-MS and qualitative–quantitative determination by LC–ESI-MS. Journal of Pharmaceutical and Biomedical Analysis, 2011, 56, 228-239.	2.8	47
18	Catechin derivatives in Jatropha macrantha stems: Characterisation and LC/ESI/MS/MS quali–quantitative analysis. Journal of Pharmaceutical and Biomedical Analysis, 2006, 40, 639-647.	2.8	45

PAOLA MONTORO

#	Article	IF	CITATIONS
19	Determination of six steviol glycosides of Stevia rebaudiana (Bertoni) from different geographical origin by LC–ESI–MS/MS. Food Chemistry, 2013, 141, 745-753.	8.2	41
20	Metabolite fingerprinting of Camptotheca acuminata and the HPLC–ESI-MS/MS analysis of camptothecin and related alkaloids. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 405-415.	2.8	39
21	Identiï¬cation and quantiï¬cation of components in extracts ofUncaria tomentosa by HPLC-ES/MS. Phytochemical Analysis, 2004, 15, 55-64.	2.4	37
22	Liquid chromatography tandem mass spectrometry determination of chemical markers and principal component analysis of Vitex agnus-castus L. fruits (Verbenaceae) and derived food supplements. Journal of Pharmaceutical and Biomedical Analysis, 2012, 70, 224-230.	2.8	37
23	LC–ESI-MS quali-quantitative determination of phenolic constituents in different parts of wild and cultivated Astragalus gombiformis. Journal of Pharmaceutical and Biomedical Analysis, 2013, 72, 89-98.	2.8	37
24	Metabolic profiling of Vitex agnus castus leaves, fruits and sprouts: Analysis by LC/ESI/(QqQ)MS and (HR) LC/ESI/(Orbitrap)/MSn. Journal of Pharmaceutical and Biomedical Analysis, 2015, 102, 215-221.	2.8	37
25	Characterization, phenolic profile, nitrogen compounds and antioxidant activity of Carignano wines. Journal of Food Composition and Analysis, 2017, 58, 60-68.	3.9	35
26	Combination of LC–MS based metabolomics and antioxidant activity for evaluation of bioactive compounds in Fragaria vesca leaves from Italy. Journal of Pharmaceutical and Biomedical Analysis, 2018, 150, 233-240.	2.8	35
27	Metabolite profiling of "green―extracts of Corylus avellana leaves by 1H NMR spectroscopy and multivariate statistical analysis. Journal of Pharmaceutical and Biomedical Analysis, 2018, 160, 168-178.	2.8	34
28	Analysis of flavonoids from Cyclanthera pedata fruits by liquid chromatography/electrospray mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2004, 34, 295-304.	2.8	33
29	Steviol glycosides targeted analysis in leaves of Stevia rebaudiana (Bertoni) from plants cultivated under chilling stress conditions. Food Chemistry, 2016, 190, 572-580.	8.2	33
30	Effect of Very-Low-Calorie Ketogenic Diet on Psoriasis Patients: A Nuclear Magnetic Resonance-Based Metabolomic Study. Journal of Proteome Research, 2021, 20, 1509-1521.	3.7	33
31	Application of liquid chromatography/electrospray ionization tandem mass spectrometry to the analysis of polyphenolic compounds from an infusion ofByrsonima crassa Niedenzu. Rapid Communications in Mass Spectrometry, 2005, 19, 2244-2250.	1.5	31
32	Quali-quantitative determination of triterpenic acids of Ziziphus jujuba fruits and evaluation of their capability to interfere in macrophages activation inhibiting NO release and iNOS expression. Food Research International, 2015, 77, 109-117.	6.2	31
33	Biological Activities of Aerial Parts Extracts of <i>Euphorbia characias</i> . BioMed Research International, 2016, 2016, 1-11.	1.9	30
34	Identification of Bioactive Phytochemicals in Mulberries. Metabolites, 2020, 10, 7.	2.9	30
35	Furostanol saponins from Yucca gloriosa L. rhizomes. Biochemical Systematics and Ecology, 2006, 34, 809-814.	1.3	29
36	Plant Specialized Metabolites in Hazelnut (Corylus avellana) Kernel and Byproducts: An Update on Chemistry, Biological Activity, and Analytical Aspects. Planta Medica, 2019, 85, 840-855.	1.3	29

Paola Montoro

#	Article	IF	CITATIONS
37	Comparative Phytochemical Characterization, Genetic Profile, and Antiproliferative Activity of Polyphenol-Rich Extracts from Pigmented Tubers of Different Solanum tuberosum Varieties. Molecules, 2020, 25, 233.	3.8	29
38	Flavonoids and isoflavonoids from Gynerium sagittatum. Phytochemistry, 2007, 68, 1277-1284.	2.9	28
39	Phenolic compounds from Bursera simaruba Sarg. bark: Phytochemical investigation and quantitative analysis by tandem mass spectrometry. Phytochemistry, 2009, 70, 641-649.	2.9	28
40	A new approach to discriminate Rosmarinus officinalis L. plants with antioxidant activity, based on HPTLC fingerprint and targeted phenolic analysis combined with PCA. Industrial Crops and Products, 2016, 94, 665-672.	5.2	28
41	<i>Yucca gloriosa</i> :  A Source of Phenolic Derivatives with Strong Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2007, 55, 6636-6642.	5.2	27
42	Phenolic compounds from Byrsonima crassifolia L. bark: Phytochemical investigation and quantitative analysis by LC-ESI MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2011, 56, 1-6.	2.8	26
43	Targeted and untargeted mass spectrometric approaches in discrimination between <i>Myrtus communis</i> cultivars from Sardinia region. Journal of Mass Spectrometry, 2016, 51, 704-715.	1.6	25
44	Studies on the Constituents ofCyclanthera pedataFruits:Â Isolation and Structure Elucidation of New Flavonoid Glycosides and Their Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2001, 49, 5156-5160.	5.2	24
45	Medicinal plants in the treatment of women's disorders: Analytical strategies to assure quality, safety and efficacy. Journal of Pharmaceutical and Biomedical Analysis, 2015, 113, 189-211.	2.8	24
46	In depth chemical investigation of Glycyrrhiza triphylla Fisch roots guided by a preliminary HPLC-ESIMS n profiling. Food Chemistry, 2018, 248, 128-136.	8.2	23
47	Phenylpropanoid Glycosides from Tynanthus panurensis:  Characterization and LC-MS Quantitative Analysis. Journal of Agricultural and Food Chemistry, 2005, 53, 2853-2858.	5.2	22
48	Highâ€performance liquid chromatographic separation and identification of polyphenolic compounds from the infusion of <i>Davilla elliptica</i> St. Hill. Phytochemical Analysis, 2008, 19, 17-24.	2.4	22
49	Steroidal saponins from Yucca gloriosa L. rhizomes: LC–MS profiling, isolation and quantitative determination. Phytochemistry, 2011, 72, 126-135.	2.9	21
50	Characterisation of Fragaria vesca fruit from Italy following a metabolomics approach through integrated mass spectrometry techniques. LWT - Food Science and Technology, 2016, 74, 387-395.	5.2	21
51	LC-MS based metabolomics study of different parts of myrtle berry from Sardinia (Italy). Journal of Berry Research, 2017, 7, 217-229.	1.4	21
52	In depth LC-ESIMSn-guided phytochemical analysis of Ziziphus jujuba Mill. leaves. Phytochemistry, 2019, 159, 148-158.	2.9	21
53	Determination of steroidal glycosides in Yucca gloriosa flowers by LC/MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2010, 52, 791-795.	2.8	20
54	Integrated mass spectrometric and multivariate data analysis approaches for the discrimination of organic and conventional strawberry (Fragaria ananassa Duch.) crops. Food Research International, 2015, 77, 264-272.	6.2	20

PAOLA MONTORO

#	Article	IF	CITATIONS
55	Evaluation of bioactive compounds and antioxidant capacity of edible feijoa (Acca sellowiana (O. Berg)) Tj ETQq1	1.0,78431 2.8	4ggBT /O∨
56	Antiproliferative and pro-apoptotic activity of novel phenolic derivatives of resveratrol. Life Sciences, 2007, 81, 873-883.	4.3	19
57	Determination of phenolic compounds in Yucca gloriosa bark and root by LC–MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2008, 47, 854-859.	2.8	18
58	Detection and comparison of phenolic compounds in different extracts of black currant leaves by liquid chromatography coupled with high-resolution ESI-LTQ-Orbitrap MS and high-sensitivity ESI-Qtrap MS. Journal of Pharmaceutical and Biomedical Analysis, 2020, 179, 112926.	2.8	18
59	Licorice (Glycyrrhiza glabra, G. uralensis, and G. inflata) and Their Constituents as Active Cosmeceutical Ingredients. Cosmetics, 2022, 9, 7.	3.3	18
60	Liquid chromatography/tandem mass spectrometry of unusual phenols fromYucca schidigera bark: comparison with other analytical techniques. Journal of Mass Spectrometry, 2004, 39, 1131-1138.	1.6	17
61	Metabolomics and antioxidant activity of the leaves of Prunus dulcis Mill. (Italian cvs. Toritto and) Tj ETQq1 1 0.78	4314 rgB1 2.8	7 /Overlock 17
62	LC-ESI/LTQOrbitrap/MS based metabolomics in analysis of Myrtus communis leaves from Sardinia (Italy). Industrial Crops and Products, 2019, 128, 354-362.	5.2	17
63	Saliva of patients affected by salivary gland tumour: An NMR metabolomics analysis. Journal of Pharmaceutical and Biomedical Analysis, 2018, 160, 436-442.	2.8	16
64	HPTLC-PCA Complementary to HRMS-PCA in the Case Study of Arbutus unedo Antioxidant Phenolic Profiling. Foods, 2019, 8, 294.	4.3	16
65	Profiling and Simultaneous Quantitative Determination of Anthocyanins in Wild <i>Myrtus communis</i> L. Berries from Different Geographical Areas in Sardinia and their Comparative Evaluation. Phytochemical Analysis, 2016, 27, 249-256.	2.4	15
66	Selected Enzyme Inhibitory Effects of Euphorbia characias Extracts. BioMed Research International, 2018, 2018, 1-9.	1.9	15
67	Biogenic amines and other polar compounds in long aged oxidized Vernaccia di Oristano white wines. Food Research International, 2018, 111, 97-103.	6.2	15
68	Galactosyl Derivatives of l-Arginine and d-Arginine:  Synthesis, Stability, Cell Permeation, and Nitric Oxide Production in Pituitary GH3 Cells. Journal of Medicinal Chemistry, 2006, 49, 4826-4833.	6.4	14
69	Integrated mass spectrometry approach to profile proanthocyanidins occurring in food supplements: Analysis of Potentilla erecta L. rhizomes. Food Chemistry, 2013, 141, 4171-4178.	8.2	14
70	First characterization of Pompia intrea candied fruit: The headspace chemical profile, polar extract composition and its biological activities. Food Research International, 2019, 120, 620-630.	6.2	14
71	Antioxidant Bibenzyl Derivatives from Notholaena nivea Desv Molecules, 2011, 16, 2527-2541.	3.8	13

 $HR\hat{a} \in LC\hat{a} \in ESI\hat{a} \in Orbitrap\hat{a} \in MS \text{ based metabolite profiling of Prunus dulcis Mill. (Italian cultivars Toritto and) Tj ETQ_{2.4}^{0,0} O rgB_{13}^{-}/Overlock = 0.4$

5

Paola Montoro

#	Article	IF	CITATIONS
70	Metabolite profiling and antioxidant activity of the polar fraction of Italian almonds (Toritto and) Tj ETQq1 1 0.784	4314 rgBT	/Overlock
73	Analysis, 2020, 190, 113518.	2.8	13
74	HR-LC-ESI-Orbitrap-MS-Based Metabolic Profiling Coupled with Chemometrics for the Discrimination of Different Echinops spinosus Organs and Evaluation of Their Antioxidant Activity. Antioxidants, 2022, 11, 453.	5.1	13
75	Flavonoids from the leaves ofCyclanthera pedata: two new malonyl derivatives. Phytochemical Analysis, 2005, 16, 210-216.	2.4	12
76	Qualitative Profile and Quantitative Determination of Flavonoids from Crocus Sativus L. Petals by LC-MS/MS. Natural Product Communications, 2008, 3, 1934578X0800301.	0.5	11
77	Flavanocoumarins from Guazuma ulmifolia bark and evaluation of their affinity for STAT1. Phytochemistry, 2013, 86, 64-71.	2.9	11
78	LC-ESI/LTQOrbitrap/MS Metabolomic Analysis of Fennel Waste (Foeniculum vulgare Mill.) as a Byproduct Rich in Bioactive Compounds. Foods, 2021, 10, 1893.	4.3	11
79	Antinociceptive effects of an extract, fraction and an isolated compound of the stem bark of Maytenus rigida. Revista Brasileira De Farmacognosia, 2012, 22, 598-603.	1.4	9
80	A serum nuclear magnetic resonance-based metabolomic signature of antiphospholipid syndrome. Journal of Pharmaceutical and Biomedical Analysis, 2017, 133, 90-95.	2.8	9
81	Metabolomics of Healthy Berry Fruits. Current Medicinal Chemistry, 2019, 25, 4888-4902.	2.4	8
82	ESI-MS, ESI-MS/MS Fingerprint and LC-ESI-MS Analysis of Proathocyanidins from <i>Bursera simaruba</i> Sarg Bark. Natural Product Communications, 2009, 4, 1934578X0900401.	0.5	7
83	Effects of bio-fertilizers on the production of specialized metabolites in Salvia officinalis L. leaves: An analytical approach based on LC-ESI/LTQ-Orbitrap/MS and multivariate data analysis. Journal of Pharmaceutical and Biomedical Analysis, 2021, 197, 113951.	2.8	7
84	NMR-based metabolomic profile of hypercholesterolemic human sera: Relationship with in vitro gene expression?. PLoS ONE, 2020, 15, e0231506.	2.5	6
85	LC-ESI/LTQ-Orbitrap-MS Based Metabolomics in Evaluation of Bitter Taste of Arbutus unedo Honey. Molecules, 2021, 26, 2765.	3.8	6
86	Profiling of Phenolics from <i>Tephrosia cinerea</i> . Planta Medica, 2011, 77, 1861-1864.	1.3	3
87	Quantitative Analysis of Caffeoylquinic Acids and Styrylpyrones in Sweetia panamensis Bark by UPLC. Chromatographia, 2009, 70, 1621-1626.	1.3	1