Carmine Galasso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/212920/publications.pdf

Version: 2024-02-01

201674 223800 2,545 92 27 46 citations h-index g-index papers 99 99 99 1598 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A deep neural network framework for realâ€time onâ€site estimation of acceleration response spectra of seismic ground motions. Computer-Aided Civil and Infrastructure Engineering, 2023, 38, 87-103.	9.8	24
2	Integrating earthquake early warnings into business continuity and organisational resilience: lessons learned from Mexico City. Disasters, 2023, 47, 320-345.	2.2	4
3	Directivity-Induced Pulse-Like Ground Motions and Fracture Risk of Pre-Northridge Welded Column Splices. Journal of Earthquake Engineering, 2022, 26, 2754-2772.	2.5	6
4	Developing a risk-informed decision-support system for earthquake early warning at a critical seaport. Reliability Engineering and System Safety, 2022, 218, 108035.	8.9	16
5	A computational framework for selecting the optimal combination of seismic retrofit and insurance coverage. Computer-Aided Civil and Infrastructure Engineering, 2022, 37, 956-975.	9.8	10
6	Surrogate probabilistic seismic demand modelling of inelastic singleâ€degreeâ€ofâ€freedom systems for efficient earthquake risk applications. Earthquake Engineering and Structural Dynamics, 2022, 51, 492-511.	4.4	18
7	A Simulationâ€Based Framework for Earthquake Riskâ€Informed and Peopleâ€Centered Decision Making on Future Urban Planning. Earth's Future, 2022, 10, .	6.3	18
8	A Bayesian model for wind farm capacity factors. Energy Conversion and Management, 2022, 252, 114950.	9.2	6
9	Modelling and quantifying tomorrow's risks from natural hazards. Science of the Total Environment, 2022, 817, 152552.	8.0	39
10	Investigating the potential effectiveness of earthquake early warning across Europe. Nature Communications, 2022, 13, 639.	12.8	24
11	Validation of the Epidemic-Type Aftershock Sequence (ETAS) Models for Simulation-Based Seismic Hazard Assessments. Seismological Research Letters, 2022, 93, 1601-1618.	1.9	10
12	A fragility-oriented approach for seismic retrofit design. Earthquake Spectra, 2022, 38, 1813-1843.	3.1	11
13	Seismic Performance of Exposed Column–Base Plate Connections with Ductile Anchor Rods. Journal of Structural Engineering, 2022, 148, .	3.4	7
14	Urban growth modelling and social vulnerability assessment for a hazardous Kathmandu Valley. Scientific Reports, 2022, 12, 6152.	3.3	25
15	Multicriteria decision making for selecting an optimal survey approach for large building portfolios. International Journal of Disaster Risk Reduction, 2022, 76, 102985.	3.9	4
16	A Bayesian networkâ€based probabilistic framework for updating aftershock risk of bridges. Earthquake Engineering and Structural Dynamics, 2022, 51, 2496-2519.	4.4	4
17	Effects of ground-motion sequences on fragility and vulnerability of case-study reinforced concrete frames. Bulletin of Earthquake Engineering, 2021, 19, 6329-6359.	4.1	30
18	Accounting for directivity-induced pulse-like ground motions in building portfolio loss assessment. Bulletin of Earthquake Engineering, 2021, 19, 6303-6328.	4.1	13

#	Article	IF	Citations
19	Gaussian process regression for fatigue reliability analysis of offshore wind turbines. Structural Safety, 2021, 88, 102020.	5.3	30
20	Reliability Analysis and Design Considerations for Exposed Column Base Plate Connections Subjected to Flexure and Axial Compression. Journal of Structural Engineering, 2021, 147, .	3.4	3
21	Hysteretic energyâ€based stateâ€dependent fragility for groundâ€motion sequences. Earthquake Engineering and Structural Dynamics, 2021, 50, 1187-1203.	4.4	31
22	Simplified seismic loss assessment for optimal structural retrofit of RC buildings. Earthquake Spectra, 2021, 37, 346-365.	3.1	30
23	INVESTIGATING GROUND-MOTION DURATION EFFECTS ON BUILDING PORTFOLIO LOSS ESTIMATES., 2021,,.		1
24	MAPPING PERFORMANCE-TARGETED RETROFITTING TO SEISMIC FRAGILITY REDUCTION., 2021,,.		1
25	A Region-Specific Ground-Motion Model for Inelastic Spectral Displacement in Northern Italy Considering Spatial Correlation Properties. Seismological Research Letters, 2021, 92, 1979-1991.	1.9	2
26	A model taxonomy for flood fragility and vulnerability assessment of buildings. International Journal of Disaster Risk Reduction, 2021, 53, 101985.	3.9	20
27	A decisionâ€making methodology for riskâ€informed earthquake early warning. Computer-Aided Civil and Infrastructure Engineering, 2021, 36, 747-761.	9.8	24
28	Accuracy and Uncertainty Analysis of Selected Methodological Approaches to Earthquake Early Warning in Europe. Seismological Research Letters, 2021, 92, 2321-2332.	1.9	9
29	Satellite precipitation–based extreme event detection for flood index insurance. International Journal of Disaster Risk Reduction, 2021, 55, 102108.	3.9	6
30	Material Property Uncertainties versus Joint Structural Detailing: Relative Effect on the Seismic Fragility of Reinforced Concrete Frames. Journal of Structural Engineering, 2021, 147, .	3.4	11
31	Simplicity versus accuracy trade-off in estimating seismic fragility of existing reinforced concrete buildings. Soil Dynamics and Earthquake Engineering, 2021, 144, 106678.	3.8	29
32	Editorial. Risk-based, Pro-poor Urban Design and Planning for Tomorrow's Cities. International Journal of Disaster Risk Reduction, 2021, 58, 102158.	3.9	40
33	Predicting approximate seismic responses in multistory buildings from real-time earthquake source information, for earthquake early warning applications. Bulletin of Earthquake Engineering, 2021, 19, 4865-4885.	4.1	7
34	Innovations in earthquake risk reduction for resilience: Recent advances and challenges. International Journal of Disaster Risk Reduction, 2021, 60, 102267.	3.9	72
35	Typhoon risk and climate-change impact assessment for cultural heritage asset roofs. Structural Safety, 2021, 91, 102065.	5.3	8
36	Comparing the Performance of Regional Earthquake Early Warning Algorithms in Europe. Frontiers in Earth Science, 2021, 9, .	1.8	9

#	Article	IF	CITATIONS
37	Advancements in multi-rupture time-dependent seismic hazard modeling, including fault interaction. Earth-Science Reviews, 2021, 220, 103650.	9.1	12
38	Cloud Capacity Spectrum Method: Accounting for record-to-record variability in fragility analysis using nonlinear static procedures. Soil Dynamics and Earthquake Engineering, 2021, 150, 106829.	3.8	25
39	A multiâ€fidelity Bayesian framework for robust seismic fragility analysis. Earthquake Engineering and Structural Dynamics, 2021, 50, 4199-4219.	4.4	6
40	Validation of Ground Motion Simulations for Historical Events using Skewed Bridges. Journal of Earthquake Engineering, 2020, 24, 1652-1674.	2.5	8
41	A probabilistic framework for offshore wind turbine loss assessment. Renewable Energy, 2020, 147, 1772-1783.	8.9	25
42	A simple method for Nâ€M interaction diagrams of circular reinforced concrete cross sections. Structural Concrete, 2020, 21, 48-55.	3.1	8
43	Site-specific ultimate limit state fragility of offshore wind turbines on monopile substructures. Engineering Structures, 2020, 204, 109903.	5.3	14
44	Advancing fracture fragility assessment of preâ€Northridge welded column splices. Earthquake Engineering and Structural Dynamics, 2020, 49, 132-154.	4.4	7
45	Resilient communities through safer schools. International Journal of Disaster Risk Reduction, 2020, 45, 101446.	3.9	32
46	Impact of climate-change scenarios on offshore wind turbine structural performance. Renewable and Sustainable Energy Reviews, 2020, 134, 110323.	16.4	9
47	Gaussian process regression for seismic fragility assessment of building portfolios. Structural Safety, 2020, 87, 101980.	5. 3	53
48	A Review of the Technical and Socio-Organizational Components of Earthquake Early Warning Systems. Frontiers in Earth Science, 2020, 8, .	1.8	27
49	Correlation properties of integral groundâ€motion intensity measures from Italian strongâ€motion records. Earthquake Engineering and Structural Dynamics, 2020, 49, 1581-1598.	4.4	10
50	Wind-uplift fragility analysis of roof sheathing for cultural heritage assets in the Philippines. International Journal of Disaster Risk Reduction, 2020, 51, 101753.	3.9	4
51	A Likert Scale-Based Model for Benchmarking Operational Capacity, Organizational Resilience, and Disaster Risk Reduction. International Journal of Disaster Risk Science, 2020, 11, 404-409.	2.9	34
52	Probabilistic earthquake and flood loss assessment in the Middle East. International Journal of Disaster Risk Reduction, 2020, 49, 101662.	3.9	23
53	A multi-hazard risk prioritisation framework for cultural heritage assets. Natural Hazards and Earth System Sciences, 2020, 20, 1391-1414.	3.6	56
54	Earthquake early warning: Recent advances and perspectives. Earth-Science Reviews, 2020, 205, 103184.	9.1	88

#	Article	IF	CITATIONS
55	TYPHOON FRAGILITY ANALYSIS AND CLIMATE CHANGE IMPACT ASSESSMENT OF FILIPINO CULTURAL HERITAGE ASSET ROOFS. , 2020, , .		2
56	From rapid visual survey to multi-hazard risk prioritisation and numerical fragility of school buildings. Natural Hazards and Earth System Sciences, 2019, 19, 1365-1386.	3.6	59
57	A comparison of NGA-West2 ground-motion models to recent Chinese data. Soil Dynamics and Earthquake Engineering, 2019, 125, 105677.	3.8	5
58	Groundâ€motion intensity measure correlations observed in Italian strongâ€motion records. Earthquake Engineering and Structural Dynamics, 2019, 48, 1634-1660.	4.4	19
59	Accounting for spectral shape in simplified fragility analysis of case-study reinforced concrete frames. Soil Dynamics and Earthquake Engineering, 2019, 119, 91-103.	3.8	36
60	Variable Fault Geometry Suggests Detailed Faultâ€Slipâ€Rate Profiles and Geometries Are Needed for Faultâ€Based Probabilistic Seismic Hazard Assessment (PSHA). Bulletin of the Seismological Society of America, 2019, 109, 110-123.	2.3	19
61	Current Challenges and Future Trends in Analytical Fragility and Vulnerability Modeling. Earthquake Spectra, 2019, 35, 1927-1952.	3.1	113
62	An Advanced Estimation Algorithm for Groundâ€Motion Models with Spatial Correlation. Bulletin of the Seismological Society of America, 2019, 109, 541-566.	2.3	13
63	Validation of stochastic ground motion model modification by comparison to seismic demand of recorded ground motions. Bulletin of Earthquake Engineering, 2019, 17, 2871-2898.	4.1	10
64	Data schemas for multiple hazards, exposure and vulnerability. Disaster Prevention and Management, 2019, 28, 752-763.	1.2	10
65	OPTIMAL RETROFIT SELECTION FOR SEISMICALLY-DEFICIENT RC BUILDINGS BASED ON SIMPLIFIED PERFORMANCE ASSESSMENT., 2019, , .		1
66	STATE-DEPENDENT VULNERABILITY OF CASE-STUDY REINFORCED CONCRETE FRAMES., 2019,,.		3
67	REGIONAL-SCALE SEISMIC FRAGILITY ASSESSMENT BASED ON GAUSSIAN PROCESS REGRESSION. , 2019, , .		0
68	Information theory measures for the engineering validation of groundâ€motion simulations. Earthquake Engineering and Structural Dynamics, 2018, 47, 1095-1104.	4.4	6
69	Hazardâ€compatible modification of stochastic ground motion models. Earthquake Engineering and Structural Dynamics, 2018, 47, 1774-1798.	4.4	13
70	RC infilled building performance against the evidence of the 2016 EEFIT Central Italy post-earthquake reconnaissance mission: empirical fragilities and comparison with the FAST method. Bulletin of Earthquake Engineering, 2018, 16, 2943-2969.	4.1	29
71	Modification of stochastic ground motion models for matching target intensity measures. Earthquake Engineering and Structural Dynamics, 2018, 47, 3-24.	4.4	19
72	Fragility Curves for Assessing the Resilience of Electricity Networks Constructed from an Extensive Fault Database. Natural Hazards Review, 2018, 19, .	1.5	68

#	Article	IF	Citations
73	2016–2017 Central Italy Earthquake Sequence: Seismic Retrofit Policy and Effectiveness. Earthquake Spectra, 2018, 34, 1671-1691.	3.1	36
74	Column splice fracture effects on the seismic performance of steel moment frames. Journal of Constructional Steel Research, 2017, 137, 93-101.	3.9	6
75	FRACAS: A capacity spectrum approach for seismic fragility assessment including record-to-record variability. Engineering Structures, 2016, 125, 337-348.	5.3	62
76	Collapse risk and residual drift performance of steel buildings using post-tensioned MRFs and viscous dampers in near-fault regions. Bulletin of Earthquake Engineering, 2016, 14, 1643-1662.	4.1	57
77	Fracture Mechanics-Based Design of Column Splices with Partial Joint Penetration Welds. Journal of Structural Engineering, 2016, 142, .	3.4	16
78	Derivation of Fracture Mechanics Based Design Formulas for Partial Joint Penetration Welded Column Splices., 2015,,.		0
79	Probabilistic demand and fragility assessment of welded column splices in steel moment frames. Earthquake Engineering and Structural Dynamics, 2015, 44, 1823-1840.	4.4	14
80	COLLAPSE RISK EVALUATION OF SELF-CENTERING STEEL MRFS WITH VISCOUS DAMPERS IN NEAR-FAULT REGIONS. , $2015, , .$		0
81	Ground Motion Record Selection Based on Broadband Spectral Compatibility. Earthquake Spectra, 2014, 30, 1427-1448.	3.1	136
82	A Statistical Model for Flood Depth Estimation in Southeast Europe. , 2014, , .		3
83	Uncertainly Analysis of Flexural Overstrength for Capacity Design of RC Beams. Journal of Structural Engineering, 2014, 140, .	3.4	29
84	Validation of groundâ€motion simulations for historical events using MDoF systems. Earthquake Engineering and Structural Dynamics, 2013, 42, 1395-1412.	4.4	45
85	Validation of Ground-Motion Simulations for Historical Events Using SDoF Systems. Bulletin of the Seismological Society of America, 2012, 102, 2727-2740.	2.3	34
86	Comparative assessment of load–resistance factor design of FRP-reinforced cross sections. Construction and Building Materials, 2012, 34, 151-161.	7.2	13
87	Engineering ground motion record selection in the ITalian ACcelerometric Archive. Bulletin of Earthquake Engineering, 2011, 9, 1761-1778.	4.1	43
88	A simplified method for flexural capacity assessment of circular RC cross-sections. Engineering Structures, 2011, 33, 942-946.	5.3	20
89	REXEL: computer aided record selection for code-based seismic structural analysis. Bulletin of Earthquake Engineering, 2010, 8, 339-362.	4.1	479
90	Conditional Hazard Maps for Secondary Intensity Measures. Bulletin of the Seismological Society of America, 2010, 100, 3312-3319.	2.3	39

#	Article	IF	CITATIONS
91	Uncertainty in early warning predictions of engineering ground motion parameters: What really matters?. Geophysical Research Letters, 2009, 36, .	4.0	40
92	A generalized ground-motion model for consistent mainshock–aftershock intensity measures using successive recurrent neural networks. Bulletin of Earthquake Engineering, 0, , .	4.1	3