
Datta S Chavan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/212915/publications.pdf Version: 2024-02-01

2

#	Article	IF	CITATIONS
1	Green House Management Using Intelligent Sensors and Internet of Things. Lecture Notes in Electrical Engineering, 2021, , 233-241.	0.4	1
2	River Water Pollution Management Utilizingsmart Sensors Along with Internet of Things. Lecture Notes in Electrical Engineering, 2021, , 221-231.	0.4	1
3	Comparison and Suitability of Motors for Propulsion in Electric Vehicles. Lecture Notes in Electrical Engineering, 2021, , 83-89.	0.4	1
4	Enhancing Performance of an Electric Vehicle on Slope Using Supercapacitor. Lecture Notes in Electrical Engineering, 2021, , 91-99.	0.4	1
5	Research test set up for wind turbine models. , 2017, , .		0
6	Impact of vertical wind shear on wind turbine performance. , 2017, , .		2
7	Application of wind rose for wind turbine installation. , 2017, , .		3
8	Deicing of wind turbine blade by high frequency dielectric heating fabricating blade as a capacitor. , 2017, , .		2
9	Sixth order model of wind turbine voltage flicker considering vertical wind shear. , 2017, , .		1
10	Wind turbine model testing using point source of air to create wind shear. , 2017, , .		1
11	Towers fixing mechanism to create wake effect in a laboratory wind farm model. , 2017, , .		1
12	Adjustable concentric towers to vary tower shadow effect on flicker in wind turbine. , 2017, , .		1
13	Laboratory model of surface roughness to test wind turbine voltage flicker. , 2017, , .		1
14	Ice melting from wind turbine blades using resistive heating. , 2017, , .		1
15	Ice removal from wind turbine using hot water flow through blade. , 2017, , .		1
16	Wind turbine blade fixing mechanism. , 2017, , .		1
17	Ice elimination from wind turbine blade using induction heating. , 2017, , .		1

18 Ice extraction from wind turbine using flow of hot air through blade. , 2017, , .

2

#	Article	IF	CITATIONS
19	Use of bicycle and gear box for testing of wind generator model. , 2017, , .		1
20	Testing of wind generator models using motor drive. , 2017, , .		1
21	Fabrication of wind turbine from sheep wool. , 2017, , .		1
22	Tree mounted wind turbine. , 2017, , .		2
23	Laboratory test set up to study wind turbine tower models. , 2017, , .		1
24	Wind turbine model testing using all side fans arrangement to create turbulence. , 2017, , .		0
25	Laboratory set up for the study of the effect of vertical shear on horizontal axis wind turbine. , 2016, , .		2
26	Output voltage control scheme for standalone wind energy system. , 2016, , .		4
27	Study of output parameters of horizontal axis wind turbines using experimental test setup. , 2016, , .		2
28	Analysis of voltage flickers using laboratory test set up. , 2016, , .		1
29	Generating and saving energy by installing wind turbines along the railway tracks. , 2015, , .		12
30	Prediction of power yield from wind turbines for hilly sites. , 2015, , .		21
31	A novel Neem based supercapacitor and its modeling using artificial neural network. , 2015, , .		9
32	Linear Model of Flicker Due to Vertical Wind Shear for a Turbine Mounted on a Green Building. , 2014, ,		26
33	Assessment of Flicker Due to Vertical Wind Shear in a Wind Turbine Mounted on a Hill with Linear Approach. , 2014, , .		24
34	Computation of flicker as a result of turbulence in a wind turbine sited on a green building using wind tunnel. , 2014, , .		28
35	Assessment of flicker owing to turbulence in a wind turbine placed on a hill using wind tunnel. , 2014, , .		29
36	Modeling of flicker due to vertical wind shear initiated by vegetation in a riverside wind turbine		25

3

DATTA S CHAVAN

#	Article	IF	CITATIONS
37	Empirical model of flicker due to vertical wind shear instigated by civilization in a seashore wind turbine using wind tunnel. , 2014, , .		27
38	Modeling of flicker in wind turbine on a green building due to vertical wind shear. , 2014, , .		23
39	Computation of flicker due to vertical wind shear in a wind turbine sited on a hill using wind tunnel. , 2014, , .		25
40	Effect of vertical wind shear on flicker in wind farm. , 2013, , .		32