Hideo Kohka Takahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2128922/publications.pdf

Version: 2024-02-01

89 papers 3,369 citations

196777 29 h-index 56 g-index

95 all docs 95 docs citations 95 times ranked 4754 citing authors

#	Article	IF	CITATIONS
1	Identification of ribosomal protein L9 as a novel regulator of proinflammatory damage-associated molecular pattern molecules. Molecular Biology Reports, 2022, 49, 2831-2838.	1.0	5
2	Long-term Advanced Glycation End Product 3 (AGE3) Stimulation Reduces Aggrecan and Type II Collagen Production in Human Chondrocytes. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2022, 95, 2-0-086.	0.0	0
3	Advanced glycation end-products reduce lipopolysaccharide uptake by macrophages. PLoS ONE, 2021, 16, e0245957.	1.1	7
4	Osteopontin silencing attenuates bleomycin-induced murine pulmonary fibrosis by regulating epithelial–mesenchymal transition. Biomedicine and Pharmacotherapy, 2021, 139, 111633.	2.5	24
5	Involvement of multiple scavenger receptors in advanced glycation end product-induced vessel tube formation in endothelial cells. Experimental Cell Research, 2021, 408, 112857.	1.2	8
6	Differential contribution of possible patternâ€recognition receptors to advanced glycation end product–induced cellular responses in macrophageâ€like RAW264.7 cells. Biotechnology and Applied Biochemistry, 2020, 67, 265-272.	1.4	21
7	Histidine-Rich Glycoprotein Inhibits High-Mobility Group Box-1-Mediated Pathways in Vascular Endothelial Cells through CLEC-1A. IScience, 2020, 23, 101180.	1.9	24
8	Advanced glycation end products (AGEs) synergistically potentiated the proinflammatory action of lipopolysaccharide (LPS) and high mobility group box-1 (HMGB1) through their direct interactions. Molecular Biology Reports, 2020, 47, 7153-7159.	1.0	9
9	A comparative study of sulphated polysaccharide effects on advanced glycation end-product uptake and scavenger receptor class A level in macrophages. Diabetes and Vascular Disease Research, 2020, 17, 147916411989697.	0.9	11
10	Alterations of lymphocyte count and platelet volume precede cerebrovascular lesions in stroke-prone spontaneously hypertensive rats. Biomarkers, 2020, 25, 305-313.	0.9	1
11	Histidineâ€rich glycoprotein ameliorates endothelial barrier dysfunction through regulation of NFâ€r̂B and MAPK signal pathway. British Journal of Pharmacology, 2019, 176, 2808-2824.	2.7	40
12	The Câ€terminal region of tumor necrosis factor like weak inducer of apoptosis is required for interaction with advanced glycation end products. Biotechnology and Applied Biochemistry, 2019, 66, 254-260.	1.4	3
13	The involvement of advanced glycation end products in angiogenesis. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 1-0-03.	0.0	О
14	Effects of scavenger receptors-1 class A stimulation on macrophage morphology and highly modified advanced glycation end product-protein phagocytosis. Scientific Reports, 2018, 8, 5901.	1.6	26
15	Interleukin-18 Amplifies Macrophage Polarization and Morphological Alteration, Leading to Excessive Angiogenesis. Frontiers in Immunology, 2018, 9, 334.	2.2	58
16	Characterization of histidine-rich glycoprotein (HRG) production under the experimental pathological conditions. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-5-13.	0.0	0
17	Interleukin-18 amplifies M2 polarization of macrophage which leads excessive angiogenesis. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-4-11.	0.0	0
18	Screening of sulfated polysaccharide and sugar-related compounds as the regulator of advanced glycation end-products uptake by macrophage. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-7-21.	0.0	0

#	Article	IF	Citations
19	Visualization of advanced glycation end-products phagocytosis by macrophages and identification of possible receptor. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-6-3.	0.0	O
20	Exercise intervention improves bone marrow niche and endothelial progenitor cell defects in stroke. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-3-3.	0.0	0
21	Pathophysiological role of a factor affecting AGEs-RAGE interaction on endothelial cell responses. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-5-26.	0.0	O
22	Therapeutic effects of anti-HMGB1 monoclonal antibody on pilocarpine-induced status epilepticus in mice. Scientific Reports, 2017, 7, 1179.	1.6	91
23	Advanced glycation end products attenuate the function of tumor necrosis factor-like weak inducer of apoptosis to regulate the inflammatory response. Molecular and Cellular Biochemistry, 2017, 434, 153-162.	1.4	8
24	The specific localization of advanced glycation end-products (AGEs) in rat pancreatic islets. Journal of Pharmacological Sciences, 2017, 134, 218-224.	1.1	12
25	Phagocytosis of Advanced Glycation End Products (AGEs) in Macrophages Induces Cell Apoptosis. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-10.	1.9	9
26	Soluble form of the receptor for advanced glycation end-products attenuates inflammatory pathogenesis in a rat model of lipopolysaccharide-induced lung injury. Journal of Pharmacological Sciences, 2016, 130, 226-234.	1.1	23
27	Anti-high mobility group box-1 (HMGB1) antibody attenuates delayed cerebral vasospasm and brain injury after subarachnoid hemorrhage in rats. Scientific Reports, 2016, 6, 37755.	1.6	62
28	Histidine-Rich Glycoprotein Prevents Septic Lethality through Regulation of Immunothrombosis and Inflammation. EBioMedicine, 2016, 9, 180-194.	2.7	60
29	Anti–high mobility group box 1 monoclonal antibody improves ischemia/reperfusion injury and mode of liver regeneration after partial hepatectomy. American Journal of Surgery, 2016, 211, 179-188.	0.9	13
30	Voluntary exercise induces neurogenesis in the hypothalamus and ependymal lining of the third ventricle. Brain Structure and Function, 2016, 221, 1653-1666.	1.2	38
31	Involvement of Moesin in the Development of Morphine Analgesic Tolerance through P-glycoprotein at the Blood-Brain Barrier. Drug Metabolism and Pharmacokinetics, 2014, 29, 482-489.	1.1	18
32	Glycyrrhizin inhibits traumatic brain injury by reducing HMGB1–RAGE interaction. Neuropharmacology, 2014, 85, 18-26.	2.0	100
33	Role of cell–cell interactions in high mobility group box 1 cytokine activity in human peripheral blood mononuclear cells and mouse splenocytes. European Journal of Pharmacology, 2013, 701, 194-202.	1.7	13
34	Histamine inhibits high mobility group box 1-induced adhesion molecule expression on human monocytes. European Journal of Pharmacology, 2013, 718, 305-313.	1.7	7
35	Anti–high mobility group boxâ€1 antibody therapy for traumatic brain injury. Annals of Neurology, 2012, 72, 373-384.	2.8	198
36	Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nature Medicine, 2012, 18, 911-917.	15.2	375

#	Article	IF	CITATIONS
37	Anti-high Mobility Group Box-1 Monoclonal Antibody Protects the Blood–Brain Barrier From Ischemia-Induced Disruption in Rats. Stroke, 2011, 42, 1420-1428.	1.0	278
38	High-Mobility Group Box Protein 1 Neutralization Reduces Development of Diet-Induced Atherosclerosis in Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 313-319.	1.1	128
39	\hat{l}^2 2-adrenoceptor stimulation inhibits advanced glycation end products-induced adhesion molecule expression and cytokine production in human peripheral blood mononuclear cells. European Journal of Pharmacology, 2010, 627, 313-317.	1.7	9
40	Advanced glycation end products enhance monocyte activation during human mixed lymphocyte reaction. Clinical Immunology, 2010, 134, 345-353.	1.4	24
41	Histamine inhibits adhesion molecule expression in human monocytes, induced by advanced glycation end products, during the mixed lymphocyte reaction. British Journal of Pharmacology, 2010, 160, 1378-1386.	2.7	9
42	Ciprofloxacin inhibits advanced glycation end productsâ€induced adhesion molecule expression on human monocytes. British Journal of Pharmacology, 2010, 161, 229-240.	2.7	11
43	Prostaglandin E2 Inhibits Advanced Glycation End Product-Induced Adhesion Molecule Expression on Monocytes, Cytokine Production, and Lymphocyte Proliferation during Human Mixed Lymphocyte Reaction. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 964-972.	1.3	5
44	Effect of Nicotine on Advanced Glycation End Product-Induced Immune Response in Human Monocytes. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 1013-1021.	1.3	7
45	Histamine Inhibits Advanced Glycation End Products-Induced Adhesion Molecule Expression on Human Monocytes. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 826-833.	1.3	8
46	Prostaglandin E2 Inhibits Advanced Glycation End Product-Induced Adhesion Molecule Expression, Cytokine Production, and Lymphocyte Proliferation in Human Peripheral Blood Mononuclear Cells. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 656-670.	1.3	13
47	Advanced Glycation End Products Subspecies-Selectively Induce Adhesion Molecule Expression and Cytokine Production in Human Peripheral Blood Mononuclear Cells. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 89-98.	1.3	47
48	STIMULATION OF ADENOSINE A2A RECEPTOR INHIBITS LPS-INDUCED EXPRESSION OF INTERCELLULAR ADHESION MOLECULE 1 AND PRODUCTION OF TNF- $\hat{l}\pm$ IN HUMAN PERIPHERAL BLOOD MONONUCLEAR CELLS. Shock, 2008, 29, 154-159.	1.0	18
49	Effects of HMGB1 on Ischemia-Reperfusion Injury in the Rat Heart. Circulation Journal, 2008, 72, 1178-1184.	0.7	68
50	Antiâ€high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB Journal, 2007, 21, 3904-3916.	0.2	335
51	Adenosine A2A-Receptor Stimulation Inhibits Lipopolysaccharide-Induced Interleukin-18 Production in Monocytes. Journal of Pharmacological Sciences, 2007, 104, 183-186.	1.1	7
52	Effects of adenosine on adhesion molecule expression and cytokine production in human PBMC depend on the receptor subtype activated. British Journal of Pharmacology, 2007, 150, 816-822.	2.7	29
53	Action profiles of statins and calcineurin inhibitors during human mixed lymphocyte reaction. Clinical Immunology, 2007, 123, 324-332.	1.4	6
54	Effect of adenosine receptor subtypes stimulation on mixed lymphocyte reaction. European Journal of Pharmacology, 2007, 564, 204-210.	1.7	21

#	Article	IF	CITATIONS
55	The immunosuppressive effects of ciprofloxacin during human mixed lymphocyte reaction. Clinical Immunology, 2006, 119, 110-119.	1.4	14
56	THE EFFECT OF CIPROFLOXACIN ON CD14 AND TOLL-LIKE RECEPTOR-4 EXPRESSION ON HUMAN MONOCYTES. Shock, 2006, 25, 247-253.	1.0	19
57	STIMULATION OF α7 NICOTINIC ACETYLCHOLINE RECEPTOR INHIBITS CD14 AND THE TOLL-LIKE RECEPTOR 4 EXPRESSION IN HUMAN MONOCYTES. Shock, 2006, 26, 358-364.	1.0	94
58	α7 Nicotinic Acetylcholine Receptor Stimulation Inhibits Lipopolysaccharide-Induced Interleukin-18 and -12 Production in Monocytes. Journal of Pharmacological Sciences, 2006, 102, 143-146.	1.1	40
59	Synthesis and biological evaluation of deoxy salacinols, the role of polar substituents in the side chain on the α-glucosidase inhibitory activity. Bioorganic and Medicinal Chemistry, 2006, 14, 500-509.	1.4	57
60	Effect of nicotine on IL-18-initiated immune response in human monocytes. Journal of Leukocyte Biology, 2006, 80, 1388-1394.	1.5	40
61	Cimetidine Induces Interleukin-18 Production through H2-Agonist Activity in Monocytes. Molecular Pharmacology, 2006, 70, 450-453.	1.0	18
62	Hypothesis: the antitumor activities of statins may be mediated by IL-18. Journal of Leukocyte Biology, 2006, 80, 215-216.	1.5	16
63	Physiology and Pathophysiology of Proteinase-Activated Receptors (PARs): PAR-2-Mediated Proliferation of Colon Cancer Cell. Journal of Pharmacological Sciences, 2005, 97, 25-30.	1.1	28
64	Mast Cell Tryptase Stimulates DLD-1 Carcinoma Through Prostaglandin- and MAP Kinase-Dependent Manners. Journal of Pharmacological Sciences, 2005, 98, 450-458.	1.1	43
65	Effect of Antibodies Against Intercellular Adhesion Molecule-1, B7, and CD40 on Interleukin-18-Treated Human Mixed Lymphocyte Reaction. Journal of Pharmacological Sciences, 2005, 97, 447-450.	1.1	8
66	\hat{l}^2 2-Adrenergic receptor stimulation inhibits LPS-induced IL-18 and IL-12 production in monocytes. Immunology Letters, 2005, 101, 168-172.	1.1	33
67	Differential effect of LFA703, pravastatin, and fluvastatin on production of IL-18 and expression of ICAM-1 and CD40 in human monocytes. Journal of Leukocyte Biology, 2005, 77, 400-407.	1.5	32
68	Effect of Ciprofloxacin-Induced Prostaglandin E 2 on Interleukin-18-Treated Monocytes. Antimicrobial Agents and Chemotherapy, 2005, 49, 3228-3233.	1.4	13
69	Involvement of prostaglandin receptors (EPR2–4) in in vivo immunosuppression of PGE2 in rat skin transplant model. International Immunopharmacology, 2005, 5, 1131-1139.	1.7	15
70	Prostaglandin E1-initiated immune regulation during human mixed lymphocyte reaction. Clinical Immunology, 2005, 115, 85-92.	1.4	6
71	Simvastatin induces interleukin-18 production in human peripheral blood mononuclear cells. Clinical Immunology, 2005, 116, 211-216.	1.4	18
72	E-Prostanoid (EP)2/EP4 Receptor-Dependent Maturation of Human Monocyte-Derived Dendritic Cells and Induction of Helper T2 Polarization. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 1213-1220.	1.3	57

#	Article	IF	Citations
73	\hat{l}^2 2-Adrenergic receptor agonist induces IL-18 production without IL-12 production. Journal of Neuroimmunology, 2004, 151, 137-147.	1.1	26
74	Analysis of sensitization to carboxymethylcellulose: Identification of high risk group using ELISA and histamine release experiment. Inflammation Research, 2004, 53, 164-169.	1.6	6
75	Histamine inhibits lipopolysaccharide-induced interleukin (IL)-18 production in human monocytes. Clinical Immunology, 2004, 112, 30-34.	1.4	26
76	Effect of ??2-adrenergic receptor agonists on intercellular adhesion molecule (ICAM)-1, B7, and CD40 expression in mixed lymphocyte reaction. Transplantation, 2004, 77, 293-301.	0.5	14
77	Histidine-rich glycoprotein plus zinc reverses growth inhibition of vascular smooth muscle cells by heparin. Cell and Tissue Research, 2003, 312, 353-359.	1.5	10
78	NF-ATc2 induces apoptosis in Burkitt's lymphoma cells through signaling via the B cell antigen receptor. European Journal of Immunology, 2003, 33, 1-11.	1.6	38
79	Histamine Inhibits Lipopolysaccharide-Induced Tumor Necrosis Factor- $\hat{l}\pm$ Production in an Intercellular Adhesion Molecule-1- and B7.1-Dependent Manner. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 624-633.	1.3	47
80	High affinity binding of serum histidine-rich glycoprotein to nickel-nitrilotriacetic acid: The application to microquantification. Life Sciences, 2003, 73, 93-102.	2.0	27
81	Histamine downregulates CD14 expression via H2 receptorson human monocytes. Clinical Immunology, 2003, 108, 274-281.	1.4	23
82	Effect of \hat{I}^2 2-Adrenergic Receptor Stimulation on Interleukin-18-Induced Intercellular Adhesion Molecule-1 Expression and Cytokine Production. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 634-642.	1.3	30
83	Unique Regulation Profile of Prostaglandin E1on Adhesion Molecule Expression and Cytokine Production in Human Peripheral Blood Mononuclear Cells. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 1188-1195.	1.3	36
84	Histamine Regulation of Interleukin-18-Initiating Cytokine Cascade Is Associated with Down-Regulation of Intercellular Adhesion Molecule-1 Expression in Human Peripheral Blood Mononuclear Cells. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 227-235.	1.3	32
85	Essential role of ICAM-1/LFA-1 interaction in synergistic effect of IL-18 and IL-12 on IFN-Î ³ production in human PBMC. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 365, 181-186.	1.4	9
86	Allergy to carboxymethylcellulose. Allergy: European Journal of Allergy and Clinical Immunology, 2002, 57, 1212-1213.	2.7	12
87	IL-18-Induced Expression of Intercellular Adhesion Molecule-1 in Human Monocytes: Involvement in IL-12 and IFN-Î ³ Production in PBMC. Cellular Immunology, 2001, 210, 106-115.	1.4	29
88	Effects of estrogen on cell growth and fibroblast growth factor receptor induction in MtT/Se cells. Endocrine Research, 1997, 23, 95-104.	0.6	9
89	Isolation and structural organization of the human corticotropin- \hat{I}^2 -lipotropin precursor gene. FEBS Letters, 1981, 135, 97-102.	1.3	137