List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/212871/publications.pdf Version: 2024-02-01

KIHYON HONC

#	Article	IF	CITATIONS
1	Self-healable, stretchable, and nonvolatile solid polymer electrolytes for sustainable energy storage and sensing applications. Energy Storage Materials, 2022, 45, 323-331.	9.5	24
2	Solution-Processed Copper Iodide Film as a <i>p</i> -Type Electrical Conductor and Their Applications. ACS Applied Electronic Materials, 2022, 4, 1232-1237.	2.0	3
3	Water Washable and Flexible Light-Emitting Fibers Based on Electrochemiluminescent Gels. ACS Applied Materials & Interfaces, 2022, 14, 17709-17718.	4.0	6
4	Amorphous copper iodide: a p-type semiconductor for solution processed p-channel thin-film transistors and inverters. Journal of Materials Chemistry C, 2022, 10, 7815-7821.	2.7	3
5	Electrochemiluminescent Transistors: A New Strategy toward Lightâ€Emitting Switching Devices. Advanced Materials, 2021, 33, e2005456.	11.1	17
6	Ultraâ€Sensitive and Stretchable Ionic Skins for Highâ€Precision Motion Monitoring. Advanced Functional Materials, 2021, 31, 2010199.	7.8	60
7	Electrochemiluminescent Materials: Electrochemiluminescent Transistors: A New Strategy toward Lightâ€Emitting Switching Devices (Adv. Mater. 5/2021). Advanced Materials, 2021, 33, 2170037.	11.1	0
8	Completely Hazy and Transparent Films by Embedding Air Gaps for Elimination of Angular Color Shift in Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 39660-39670.	4.0	2
9	Substrate-free, stretchable electrolyte gated transistors. Organic Electronics, 2020, 87, 105936.	1.4	4
10	Vacancy engineering of a solution processed Cul semiconductor: tuning the electrical properties of inorganic P-channel thin-film transistors. Journal of Materials Chemistry C, 2020, 8, 9608-9614.	2.7	29
11	Thermostable Ion Gels for High-Temperature Operation of Electrolyte-Gated Transistors. ACS Applied Materials & Interfaces, 2020, 12, 15464-15471.	4.0	13
12	Solution processed vertical p-channel thin film transistors using copper(i) thiocyanate. Journal of Materials Chemistry C, 2020, 8, 5587-5593.	2.7	12
13	Synthesis and organic solar cell application of RNA-nucleobase-complexed CdS nanowires. Solar Energy, 2020, 206, 287-293.	2.9	10
14	Lightâ€Emitting Devices Based on Electrochemiluminescence Gels. Advanced Functional Materials, 2020, 30, 1907936.	7.8	62
15	Printable carbon nanotube-based elastic conductors for fully-printed sub-1 V stretchable electrolyte-gated transistors and inverters. Journal of Materials Chemistry C, 2020, 8, 3639-3645.	2.7	17
16	Highâ€Performance Pâ€Type Copper(I) Thiocyanate Thin Film Transistors Processed from Solution at Low Temperature. Advanced Materials Interfaces, 2019, 6, 1900883.	1.9	16
17	Ultrahigh-Mobility and Solution-Processed Inorganic P-Channel Thin-Film Transistors Based on a Transition-Metal Halide Semiconductor. ACS Applied Materials & Interfaces, 2019, 11, 40243-40251.	4.0	34
18	Highly conductive and mechanically robust nanocomposite polymer electrolytes for solid-state electrochemical thin-film devices. Organic Electronics, 2019, 65, 426-433.	1.4	19

#	Article	IF	CITATIONS
19	Light emitting fabrics based on luminophore dye-doped ion gel electrolyte microfibers. Dyes and Pigments, 2018, 154, 188-193.	2.0	9
20	Solution-Processed Perovskite Gate Insulator for Sub-2 V Electrolyte-Gated Transistors. Journal of Physical Chemistry C, 2018, 122, 10552-10558.	1.5	5
21	Symmetrical Emission Transparent Organic Light-Emitting Diodes With Ultrathin Ag Electrodes. IEEE Photonics Journal, 2018, 10, 1-10.	1.0	6
22	Extremely flat metal films implemented by surface roughness transfer for flexible electronics. RSC Advances, 2018, 8, 10883-10888.	1.7	12
23	Semiâ€transparent plastic solar cell based on oxideâ€metalâ€oxide multilayer electrodes. Progress in Photovoltaics: Research and Applications, 2018, 26, 188-195.	4.4	36
24	Highly conductive, binary ionic liquid–solvent mixture ion gels for effective switching of electrolyte-gated transistors. Journal of Materials Chemistry C, 2018, 6, 10987-10993.	2.7	26
25	Flexible top-emitting organic light emitting diodes with a functional dielectric reflector on a metal foil substrate. RSC Advances, 2018, 8, 26156-26160.	1.7	13
26	Electrospun polymer electrolyte nanocomposites for solid-state energy storage. Composites Part B: Engineering, 2018, 152, 275-281.	5.9	16
27	Physically Cross-Linked Homopolymer Ion Gels for High Performance Electrolyte-Gated Transistors. ACS Applied Materials & Interfaces, 2017, 9, 8813-8818.	4.0	66
28	Stable organic-inorganic hybrid multilayered photoelectrochemical cells. Journal of Power Sources, 2017, 341, 411-418.	4.0	17
29	Area-Controllable Stamping of Semicrystalline Copolymer Ionogels for Solid-State Electrolyte-Gated Transistors and Light-Emitting Devices. ACS Applied Materials & Interfaces, 2017, 9, 42978-42985.	4.0	15
30	Self-Supporting Ion Gels for Electrochemiluminescent Sticker-Type Optoelectronic Devices. Scientific Reports, 2016, 6, 29805.	1.6	49
31	Solidâ€State Dual Function Electrochemical Devices: Energy Storage and Lightâ€Emitting Applications. Advanced Energy Materials, 2016, 6, 1600651.	10.2	27
32	The effect of localized surface plasmon resonance on the emission color change in organic light emitting diodes. Nanoscale, 2016, 8, 6463-6467.	2.8	19
33	Self-Supporting Gel Electrolyte Material for Electrochemiluminescent Sticker Display. ECS Meeting Abstracts, 2016, , .	0.0	0
34	Continuous 1D-Metallic Microfibers Web for Flexible Organic Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 27397-27404.	4.0	16
35	Electrospun ion gel nanofibers for flexible triboelectric nanogenerator: electrochemical effect on output power. Nanoscale, 2015, 7, 16189-16194.	2.8	79
36	Aerosol Jet Printed, Subâ€2 V Complementary Circuits Constructed from <i>P</i> ―and <i>N</i> â€Type Electrolyte Gated Transistors. Advanced Materials, 2014, 26, 7032-7037.	11.1	90

#	Article	IF	CITATIONS
37	Aerosol Jet Printed p- and n-type Electrolyte-Gated Transistors with a Variety of Electrode Materials: Exploring Practical Routes to Printed Electronics. ACS Applied Materials & Interfaces, 2014, 6, 18704-18711.	4.0	73
38	High Capacitance, Photo-Patternable Ion Gel Gate Insulators Compatible with Vapor Deposition of Metal Gate Electrodes. ACS Applied Materials & Interfaces, 2014, 6, 19275-19281.	4.0	30
39	Design of red, green, blue transparent electrodes for flexible optical devices. Optics Express, 2014, 22, A1257.	1.7	11
40	Simple formation method of vanadium oxide films with gap states for application in organic optoelectronics. Organic Electronics, 2014, 15, 2038-2042.	1.4	8
41	Transistors: Aerosol Jet Printed, Sub-2 V Complementary Circuits Constructed fromP- andN-Type Electrolyte Gated Transistors (Adv. Mater. 41/2014). Advanced Materials, 2014, 26, 7131-7131.	11.1	2
42	Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell. Applied Chemistry for Engineering, 2014, 25, 447-454.	0.2	0
43	Electrolyteâ€Gated Transistors for Organic and Printed Electronics. Advanced Materials, 2013, 25, 1822-1846.	11.1	797
44	Transparency controllable silver-based electrode for flexible optoelectronics. Applied Physics Letters, 2013, 102, .	1.5	10
45	Performance and Stability of Aerosol-Jet-Printed Electrolyte-Gated Transistors Based on Poly(3-hexylthiophene). ACS Applied Materials & Interfaces, 2013, 5, 6580-6585.	4.0	116
46	Printed, subâ€2V ZnO Electrolyte Gated Transistors and Inverters on Plastic. Advanced Materials, 2013, 25, 3413-3418.	11.1	140
47	MgO nano-facet embedded silver-based dielectric/metal/dielectric transparent electrode. Optics Express, 2012, 20, 845.	1.7	15
48	Electron injection in magnesium-doped organic light-emitting diodes. Applied Physics Letters, 2012, 101, 141102.	1.5	9
49	Modulation of surface plasmons coupling for enhancement of optical transmittance of silver-coated alkaline-earth metal films. Journal of Materials Chemistry, 2012, 22, 22859.	6.7	3
50	Charge Generation Mechanism of Metal Oxide Interconnection in Tandem Organic Light Emitting Diodes. Journal of Physical Chemistry C, 2012, 116, 6427-6433.	1.5	34
51	Phase-controllable copper oxides for an efficient anode interfacial layer in organic light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 2039-2044.	6.7	15
52	Design rules for highly transparent electrodes using dielectric constant matching of metal oxide with Ag film in optoelectronic devices. Chemical Communications, 2012, 48, 10606.	2.2	22
53	Doping Mechanism and Electronic Structure of Alkali Metal Doped Tris(8-hydroxyquinoline) Aluminum. Journal of Physical Chemistry C, 2012, 116, 9158-9165.	1.5	12
54	Metal-Diffusion-Induced Interface Dipole: Correlating Metal Oxide–Organic Chemical Interaction and Interface Electronic States. Journal of Physical Chemistry C, 2011, 115, 23107-23112.	1.5	7

#	Article	IF	CITATIONS
55	Effects of Functional Groups in Unsymmetrical Distyrylbiphenyl on the Performances of Blue Organic Light Emitting Diodes. Journal of Physical Chemistry C, 2011, 115, 9767-9771.	1.5	8
56	Optical Properties of WO ₃ /Ag/WO ₃ Multilayer As Transparent Cathode in Top-Emitting Organic Light Emitting Diodes. Journal of Physical Chemistry C, 2011, 115, 3453-3459.	1.5	153
57	Pâ€216L: <i>Lateâ€News Poster</i> : Optical Properties of WO ₃ /Ag/WO ₃ Multilayer as Transparent Electrode in Top Emitting OLEDs. Digest of Technical Papers SID International Symposium, 2011, 42, 1784-1786.	0.1	0
58	Review paper: Recent developments in light extraction technologies of organic light emitting diodes. Electronic Materials Letters, 2011, 7, 77-91.	1.0	162
59	BCP/Ag/MoO ₃ Transparent Cathodes for Organic Photovoltaics. Advanced Energy Materials, 2011, 1, 1023-1028.	10.2	69
60	In-situDetermination of Interface Dipole Energy between Tris(8-hydroxyquinoline) Aluminum and MgO Coated Al in Inverted Top-Emitting Organic Light-Emitting Diodes. Japanese Journal of Applied Physics, 2011, 50, 101602.	0.8	6
61	Reduced Graphite Oxide-Indium Tin Oxide Hybrid Materials for use as a Transparent Electrode. Journal of the Electrochemical Society, 2011, 158, J231.	1.3	18
62	<i>In-situ</i> Determination of Interface Dipole Energy between Tris(8-hydroxyquinoline) Aluminum and MgO Coated Al in Inverted Top-Emitting Organic Light-Emitting Diodes. Japanese Journal of Applied Physics, 2011, 50, 101602.	0.8	7
63	Enhanced Light Outâ€Coupling of Organic Lightâ€Emitting Diodes: Spontaneously Formed Nanofacetâ€Structured MgO as a Refractive Index Modulation Layer. Advanced Materials, 2010, 22, 4890-4894.	11.1	56
64	Hole Injection Layer of Thermally Evaporated Copper Oxide for Top Emitting Organic Light Emitting Diodes. Journal of the Electrochemical Society, 2010, 157, J347.	1.3	14
65	Effect of Oxygen Plasma Treatment on Crystal Growth Mode at Pentacene/Ni Interface in Organic Thin-Film Transistors. Journal of Physical Chemistry B, 2010, 114, 14854-14859.	1.2	18
66	In Situ Analysis of Hole Injection Barrier of Molybdenum-Oxide-Coated Anode with Organic Materials Using Synchrotron Radiation Photoemission Spectroscopy. Journal of the Electrochemical Society, 2009, 156, H648.	1.3	7
67	Enhancement of electrical property by oxygen doping to copper phthalocyanine in inverted top emitting organic light emitting diodes. Applied Physics Letters, 2009, 95, .	1.5	27
68	Correlation Between Charge Injection and Charge Balance in Organic Light Emitting Diodes Using LiF and IrO[sub x] Interlayers. Journal of the Electrochemical Society, 2009, 156, J57.	1.3	12
69	Effect of O[sub 2]-Plasma Treatment of Mo on the Crystal Growth Mode of Pentacene of Organic Thin-Film Transistors. Journal of the Electrochemical Society, 2009, 156, H674.	1.3	5
70	Investigation of Metal Peel-Off Technique for the Fabrication of Flexible Organic Light-Emitting Diodes. Journal of the Electrochemical Society, 2009, 156, J253.	1.3	10
71	Highly Efficient Organic Light Emitting Diodes with Hole Injection Layer of Thermally Evaporated Molybdenum Oxide. Electronic Materials Letters, 2009, 5, 151-155.	1.0	4
72	Pâ€107: Mechanism of Peelâ€Off of Metal Substrate for Flexible Devices. Digest of Technical Papers SID International Symposium, 2009, 40, 1516-1519.	0.1	3

KIHYON HONG

#	Article	IF	CITATIONS
73	Enhancement of physical properties of indium tin oxide deposited by super density arc plasma ion plating by O2 plasma treatment. Solid-State Electronics, 2008, 52, 1-6.	0.8	35
74	Flexible Organic Light-Emitting Diodes Using a Metal Peel-Off Method. IEEE Photonics Technology Letters, 2008, 20, 1836-1838.	1.3	7
75	Inverted Top-Emitting Organic Light-Emitting Diodes Using Transparent Silver Oxide Anode Formed by Oxygen Plasma. Electrochemical and Solid-State Letters, 2008, 11, H29.	2.2	17
76	Oxygen-Plasma-Treated Indium–Tin-Oxide Films on Nonalkali Glass Deposited by Super Density Arc Plasma Ion Plating. Japanese Journal of Applied Physics, 2008, 47, 862-866.	0.8	7
77	Effect of N2, Ar, and O2 plasma treatments on surface properties of metals. Journal of Applied Physics, 2008, 103, .	1.1	33
78	Pâ€221: Enhancement of Electroluminescent Property of Inverted Topâ€Emitting Organic Light Emitting Diodes with Transparent AgO _x by O ₂ Plasma. Digest of Technical Papers SID International Symposium, 2008, 39, 2036-2038.	0.1	0
79	Change of interface dipole energy with interfacial layer thickness and O2 plasma treatment in metal/organic interface. Applied Physics Letters, 2007, 90, 183508.	1.5	17
80	Enhancement of Electroluminescence Properties in OLEDs on Polyethylene Terephthalate with Ruthenium-Oxide-Coated Anode and Mg–Al Alloy Cathode. Journal of the Electrochemical Society, 2007, 154, H782.	1.3	3
81	Enhancement of Electron Injection in Flexible OLEDs Using Magnesium-Doped Tris(8-hydroxyquinoline) Aluminum Layer. Electrochemical and Solid-State Letters, 2007, 10, H85.	2.2	11
82	Enhancement of hole injection in pentacene organic thin-film transistor of O2 plasma-treated Au electrodes. Applied Physics Letters, 2006, 89, 142117.	1.5	22
83	Effect of magnesium oxide buffer layer on performance of inverted top-emitting organic light-emitting diodes. Journal of Applied Physics, 2006, 100, 064106.	1.1	23