## Jens Pedersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2128246/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Bile acid–farnesoid X receptor–fibroblast growth factor 19 axis in patients with short bowel<br>syndrome: The randomized, glepaglutide phase 2 trial. Journal of Parenteral and Enteral Nutrition,<br>2022, 46, 923-935.                                | 1.3 | 6         |
| 2  | Effects of glepaglutide, a longâ€acting glucagonâ€like peptideâ€2 analog, on intestinal morphology and perfusion in patients with short bowel syndrome: Findings from a randomized phase 2 trial Journal of Parenteral and Enteral Nutrition, 2022, , . | 1.3 | 5         |
| 3  | Expression of Cholecystokinin and its Receptors in the Intestinal Tract of Type 2 Diabetes Patients and<br>Healthy Controls. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 2164-2170.                                                    | 1.8 | 10        |
| 4  | Using a Reporter Mouse to Map Known and Novel Sites of GLP-1 Receptor Expression in Peripheral<br>Tissues of Male Mice. Endocrinology, 2021, 162, .                                                                                                     | 1.4 | 33        |
| 5  | Glucagon acutely regulates hepatic amino acid catabolism and the effect may be disturbed by steatosis.<br>Molecular Metabolism, 2020, 42, 101080.                                                                                                       | 3.0 | 66        |
| 6  | GLP-1-induced renal vasodilation in rodents depends exclusively on the known GLP-1 receptor and is<br>lost in prehypertensive rats. American Journal of Physiology - Renal Physiology, 2020, 318, F1409-F1417.                                          | 1.3 | 16        |
| 7  | Glucagon receptor signaling is not required for <i>N</i> -carbamoyl glutamate-<br>and <scp>l</scp> -citrulline-induced ureagenesis in mice. American Journal of Physiology - Renal<br>Physiology, 2020, 318, G912-G927.                                 | 1.6 | 4         |
| 8  | Alanine, arginine, cysteine, and proline, but not glutamine, are substrates for, and acute mediators of,<br>the liver-1±-cell axis in female mice. American Journal of Physiology - Endocrinology and Metabolism,<br>2020, 318, E920-E929.              | 1.8 | 32        |
| 9  | Secretion of parathyroid hormone may be coupled to insulin secretion in humans. Endocrine<br>Connections, 2020, 9, 747-754.                                                                                                                             | 0.8 | 6         |
| 10 | Glucagon Receptor Signaling and Glucagon Resistance. International Journal of Molecular Sciences, 2019, 20, 3314.                                                                                                                                       | 1.8 | 113       |
| 11 | The Liver–α-Cell Axis and Type 2 Diabetes. Endocrine Reviews, 2019, 40, 1353-1366.                                                                                                                                                                      | 8.9 | 110       |
| 12 | Paracrine crosstalk between intestinal L- and D-cells controls secretion of glucagon-like peptide-1 in mice. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E1081-E1093.                                                     | 1.8 | 32        |
| 13 | Glepaglutide, a novel long-acting glucagon-like peptide-2 analogue, for patients with short bowel<br>syndrome: a randomised phase 2 trial. The Lancet Gastroenterology and Hepatology, 2019, 4, 354-363.                                                | 3.7 | 52        |
| 14 | Glucagon Receptor Signaling and Lipid Metabolism. Frontiers in Physiology, 2019, 10, 413.                                                                                                                                                               | 1.3 | 112       |
| 15 | Glucose and amino acid metabolism in mice depend mutually on glucagon and insulin receptor<br>signaling. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E660-E673.                                                           | 1.8 | 26        |
| 16 | Evidence of a liver–alpha cell axis in humans: hepatic insulin resistance attenuates relationship<br>between fasting plasma glucagon and glucagonotropic amino acids. Diabetologia, 2018, 61, 671-680.                                                  | 2.9 | 76        |
| 17 | Disruption of glucagon receptor signaling causes hyperaminoacidemia exposing a possible<br>liver-alpha-cell axis. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314,<br>E93-E103.                                                | 1.8 | 84        |
| 18 | Enteroendocrine K and L cells in healthy and type 2 diabetic individuals. Diabetologia, 2018, 61, 284-294.                                                                                                                                              | 2.9 | 107       |

Jens Pedersen

| #  | Article                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Glucagon and Amino Acids Are Linked in a Mutual Feedback Cycle: The Liver–α-Cell Axis. Diabetes, 2017,<br>66, 235-240.                                       | 0.3 | 144       |
| 20 | The Gut: A Key to the Pathogenesis of Type 2 Diabetes?. Metabolic Syndrome and Related Disorders, 2017, 15, 259-262.                                         | 0.5 | 10        |
| 21 | Why is it so difficult to measure glucagon-like peptide-1 in a mouse?. Diabetologia, 2017, 60, 2066-2075.                                                    | 2.9 | 39        |
| 22 | The biology of glucagon and the consequences of hyperglucagonemia. Biomarkers in Medicine, 2016, 10, 1141-1151.                                              | 0.6 | 102       |
| 23 | Neurotensin Is Coexpressed, Coreleased, and Acts Together With GLP-1 and PYY in Enteroendocrine<br>Control of Metabolism. Endocrinology, 2016, 157, 176-194. | 1.4 | 119       |
| 24 | The glucagon-like peptide 2 receptor is expressed in enteric neurons and not in the epithelium of the intestine. Peptides, 2015, 67, 20-28.                  | 1.2 | 40        |
| 25 | A 25-Year-Old Woman with Type 2 Diabetes and Liver Disease. Case Reports in Gastroenterology, 2014, 8, 398-403.                                              | 0.3 | 2         |
| 26 | Increased expression of glucagon-like peptide-1 receptors in psoriasis plaques. Experimental Dermatology, 2013, 22, 150-152.                                 | 1.4 | 25        |