Sarah E Perkins-Kirkpatrick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2128194/publications.pdf

Version: 2024-02-01

91 papers 12,175 citations

71102 41 h-index 89 g-index

97 all docs

97
docs citations

97 times ranked 12464 citing authors

#	Article	IF	CITATIONS
1	Sixfold Increase in Historical Northern Hemisphere Concurrent Large Heatwaves Driven by Warming and Changing Atmospheric Circulations. Journal of Climate, 2022, 35, 1063-1078.	3.2	34
2	Interactive influence of ENSO and IOD on contiguous heatwaves in Australia. Environmental Research Letters, 2022, 17, 014004.	5.2	15
3	On the attribution of the impacts of extreme weather events to anthropogenic climate change. Environmental Research Letters, 2022, 17, 024009.	5.2	32
4	Increased occurrence of high impact compound events under climate change. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	74
5	A 50â€Year Tropical Cyclone Exposure Climatology in Southeast Asia. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	8
6	Assessing the potential for crop albedo enhancement in reducing heatwave frequency, duration, and intensity under future climate change. Weather and Climate Extremes, 2022, 35, 100415.	4.1	2
7	Exploring Potential Links Between Co-occurring Coastal Terrestrial and Marine Heatwaves in Australia. Frontiers in Climate, 2022, 4, .	2.8	7
8	Future population exposure to Australian heatwaves. Environmental Research Letters, 2022, 17, 064030.	5.2	13
9	Combined role of ENSO and IOD on compound drought and heatwaves in Australia using two CMIP6 large ensembles. Weather and Climate Extremes, 2022, 37, 100469.	4.1	11
10	Reply to Comment by Mandel et al. on "Numerically Bounded Linguistic Probability Schemes Are Unlikely to Communicate Uncertainty Effectively― Earth's Future, 2021, 9, e2020EF001757.	6.3	0
11	Reflections on weather and climate research. Nature Reviews Earth & Environment, 2021, 2, 9-14.	29.7	1
12	Business risk and the emergence of climate analytics. Nature Climate Change, 2021, 11, 87-94.	18.8	97
13	Modulating influence of drought on the synergy between heatwaves and dead fine fuel moisture content of bushfire fuels in the Southeast Australian region. Weather and Climate Extremes, 2021, 31, 100300.	4.1	24
14	Intensifying Australian Heatwave Trends and Their Sensitivity to Observational Data. Earth's Future, 2021, 9, e2020EF001924.	6.3	32
15	Evaluation of Extreme Temperatures Over Australia in the Historical Simulations of CMIP5 and CMIP6 Models. Earth's Future, 2021, 9, e2020EF001902.	6.3	24
16	CMIP6 MultiModel Evaluation of Presentâ€Day Heatwave Attributes. Geophysical Research Letters, 2021, 48, e2021GL095161.	4.0	18
17	Deconstructing Factors Contributing to the 2018 Fire Weather in Queensland, Australia. Bulletin of the American Meteorological Society, 2020, 101, S115-S122.	3.3	21
18	Drivers and impacts of the most extreme marine heatwave events. Scientific Reports, 2020, 10, 19359.	3.3	155

#	Article	IF	CITATIONS
19	Increasing trends in regional heatwaves. Nature Communications, 2020, 11, 3357.	12.8	618
20	The Role of Natural Variability and Anthropogenic Climate Change in the 2017/18 Tasman Sea Marine Heatwave. Bulletin of the American Meteorological Society, 2019, 100, S105-S110.	3.3	49
21	Regional hotspots of temperature extremes under 1.5 °C and 2 °C of global mean warming. Weather and Climate Extremes, 2019, 26, 100233.	4.1	27
22	The 2019 report of the <i><scp>MJA</scp></i> â€" <i>Lancet</i> Countdown on health and climate change: a turbulent year with mixed progress. Medical Journal of Australia, 2019, 211, 490.	1.7	53
23	Toward Calibrated Language for Effectively Communicating the Results of Extreme Event Attribution Studies. Earth's Future, 2019, 7, 1020-1026.	6.3	21
24	Experiment design of the International CLIVAR C20C+ Detection and Attribution project. Weather and Climate Extremes, 2019, 24, 100206.	4.1	43
25	A global assessment of marine heatwaves and their drivers. Nature Communications, 2019, 10, 2624.	12.8	337
26	Embracing the complexity of extreme weather events when quantifying their likelihood of recurrence in a warming world. Environmental Research Letters, 2019, 14, 024018.	5.2	6
27	Assessing Contributions of Major Emitters' Parisâ€Era Decisions to Future Temperature Extremes. Geophysical Research Letters, 2019, 46, 3936-3943.	4.0	8
28	Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change, 2019, 9, 306-312.	18.8	883
29	Amplification of Australian Heatwaves via Local Landâ€Atmosphere Coupling. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13625-13647.	3.3	43
30	Projected Marine Heatwaves in the 21st Century and the Potential for Ecological Impact. Frontiers in Marine Science, 2019, 6, .	2.5	300
31	Tail density estimation for exploratory data analysis using kernel methods. Journal of Nonparametric Statistics, 2019, 31, 144-174.	0.9	4
32	The El Niño–Southern Oscillation's effect on summer heatwave development mechanisms in Australia. Climate Dynamics, 2019, 52, 6279-6300.	3.8	21
33	Approaches to attribution of extreme temperature and precipitation events using multi-model and single-member ensembles of general circulation models. Advances in Statistical Climatology, Meteorology and Oceanography, 2019, 5, 133-146.	0.9	8
34	Longer and more frequent marine heatwaves over the past century. Nature Communications, 2018, 9, 1324.	12.8	1,081
35	Anthropogenic and Natural Influences on Record 2016 Marine Heat waves. Bulletin of the American Meteorological Society, 2018, 99, S44-S48.	3.3	35
36	On the nonlinearity of spatial scales in extreme weather attribution statements. Climate Dynamics, 2018, 50, 2739-2752.	3.8	25

#	Article	IF	Citations
37	State of the Climate in 2017. Bulletin of the American Meteorological Society, 2018, 99, Si-S310.	3.3	160
38	Biological responses to the press and pulse of climate trends and extreme events. Nature Climate Change, 2018, 8, 579-587.	18.8	330
39	Extreme events in the context of climate change. Public Health Research and Practice, 2018, 28, .	1.5	10
40	Climate research must sharpen its view. Nature Climate Change, 2017, 7, 89-91.	18.8	80
41	No significant difference between Australian heat wave impacts of Modoki and eastern Pacific El Niño. Geophysical Research Letters, 2017, 44, 5150-5157.	4.0	5
42	On the use of selfâ€organizing maps for studying climate extremes. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3891-3903.	3.3	92
43	Potential applications of subseasonalâ€ŧoâ€seasonal (<scp>S2S</scp>) predictions. Meteorological Applications, 2017, 24, 315-325.	2.1	265
44	Comparing Australian heat waves in the CMIP5 models through cluster analysis. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3266-3281.	3.3	29
45	The influence of internal climate variability on heatwave frequency trends. Environmental Research Letters, 2017, 12, 044005.	5.2	42
46	Understanding the spatioâ€temporal influence of climate variability on Australian heatwaves. International Journal of Climatology, 2017, 37, 3963-3975.	3.5	27
47	The Role of Circulation and Land Surface Conditions in Current and Future Australian Heat Waves. Journal of Climate, 2017, 30, 9933-9948.	3.2	27
48	Changes in regional heatwave characteristics as a function of increasing global temperature. Scientific Reports, 2017, 7, 12256.	3.3	231
49	The unprecedented 2015/16 Tasman Sea marine heatwave. Nature Communications, 2017, 8, 16101.	12.8	374
50	Defining a New Normal for Extremes in a Warming World. Bulletin of the American Meteorological Society, 2017, 98, 1139-1151.	3.3	33
51	Predominant Atmospheric and Oceanic Patterns during Coastal Marine Heatwaves. Frontiers in Marine Science, 2017, 4, .	2.5	36
52	State of the Climate in 2016. Bulletin of the American Meteorological Society, 2017, 98, Si-S280.	3.3	132
53	Emergence of heat extremes attributable to anthropogenic influences. Geophysical Research Letters, 2016, 43, 3438-3443.	4.0	61
54	State of the Climate in 2015. Bulletin of the American Meteorological Society, 2016, 97, Si-S275.	3.3	142

#	Article	lF	Citations
55	Natural hazards in Australia: heatwaves. Climatic Change, 2016, 139, 101-114.	3.6	80
56	Seasonal mean temperature changes control future heat waves. Geophysical Research Letters, 2016, 43, 7653-7660.	4.0	51
57	Comparing regional precipitation and temperature extremes in climate model and reanalysis products. Weather and Climate Extremes, 2016, 13, 35-43.	4.1	56
58	Disaster declarations associated with bushfires, floods and storms in New South Wales, Australia between 2004 and 2014. Scientific Reports, 2016, 6, 36369.	3.3	34
59	Impact of the representation of stomatal conductance on model projections of heatwave intensity. Scientific Reports, 2016, 6, 23418.	3.3	68
60	Projected changes in synoptic weather patterns over New Zealand examined through selfâ€organizing maps. International Journal of Climatology, 2016, 36, 3934-3948.	3.5	40
61	A hierarchical approach to defining marine heatwaves. Progress in Oceanography, 2016, 141, 227-238.	3.2	1,081
62	Evaluating synoptic systems in the CMIP5 climate models over the Australian region. Climate Dynamics, 2016, 47, 2235-2251.	3.8	31
63	Relationships between climate variability, soil moisture, and Australian heatwaves. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8144-8164.	3.3	108
64	The timing of anthropogenic emergence in simulated climate extremes. Environmental Research Letters, 2015, 10, 094015.	5.2	126
65	Increased Risk of the 2014 Australian May Heatwave Due to Anthropogenic Activity. Bulletin of the American Meteorological Society, 2015, 96, S154-S157.	3.3	4
66	Large scale and sub-regional connections in the lead up to summer heat wave and extreme rainfall events in eastern Australia. Climate Dynamics, 2015, 44, 1823-1840.	3.8	59
67	A review on the scientific understanding of heatwavesâ€"Their measurement, driving mechanisms, and changes at the global scale. Atmospheric Research, 2015, 164-165, 242-267.	4.1	471
68	State of the Climate in 2014. Bulletin of the American Meteorological Society, 2015, 96, ES1-ES32.	3.3	78
69	More Frequent, Longer, and Hotter Heat Waves for Australia in the Twenty-First Century. Journal of Climate, 2014, 27, 5851-5871.	3.2	237
70	Atmospheric and Oceanic Conditions Associated with Southern Australian Heat Waves: A CMIP5 Analysis. Journal of Climate, 2014, 27, 7807-7829.	3.2	36
71	Which is a better predictor of plant traits: temperature or precipitation?. Journal of Vegetation Science, 2014, 25, 1167-1180.	2.2	323
72	Regional changes of climate extremes over Australia–Âa comparison of regional dynamical downscaling and global climate model simulations. International Journal of Climatology, 2014, 34, 3456-3478.	3.5	24

#	Article	IF	CITATIONS
73	Systematic differences in future 20 year temperature extremes in AR4 model projections over Australia as a function of model skill. International Journal of Climatology, 2013, 33, 1153-1167.	3.5	36
74	On the Measurement of Heat Waves. Journal of Climate, 2013, 26, 4500-4517.	3.2	751
7 5	Explaining Extreme Events of 2012 from a Climate Perspective. Bulletin of the American Meteorological Society, 2013, 94, S1-S74.	3.3	229
76	The usefulness of different realizations for the model evaluation of regional trends in heat waves. Geophysical Research Letters, 2013, 40, 5793-5797.	4.0	36
77	Debate heating up over changes in climate variability. Environmental Research Letters, 2013, 8, 041001.	5.2	48
78	There are no time-travelling climatologists: why we use climate models. Ecos, 2013, , .	0.0	0
79	Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophysical Research Letters, 2012, 39, .	4.0	701
80	CMIP3 ensemble climate projections over the Âwestern tropical Pacific based on model skill. Climate Research, 2012, 51, 35-58.	1.1	18
81	Impacts of climate change on the world's most exceptional ecoregions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2306-2311.	7.1	312
82	Biases and Model Agreement in Projections of Climate Extremes over the Tropical Pacific. Earth Interactions, 2011, 15, 1-36.	1.5	26
83	Evaluating global climate models for theÂPacificÂisland region. Climate Research, 2011, 49, 169-187.	1.1	46
84	Global and Regional Comparison of Daily 2-m and 1000-hPa Maximum and Minimum Temperatures in Three Global Reanalyses. Journal of Climate, 2009, 22, 4667-4681.	3.2	35
85	Do weak AR4 models bias projections of future climate changes over Australia?. Climatic Change, 2009, 93, 527-558.	3.6	42
86	Smaller projected increases in 20â€year temperature returns over Australia in skillâ€selected climate models. Geophysical Research Letters, 2009, 36, .	4.0	41
87	Ranking the AR4 climate models over the Murrayâ€Darling Basin using simulated maximum temperature, minimum temperature and precipitation. International Journal of Climatology, 2008, 28, 1097-1112.	3.5	106
88	Regional Projections of Future Seasonal and Annual Changes in Rainfall and Temperature over Australia Based on Skill-Selected AR4 Models. Earth Interactions, 2008, 12, 1-50.	1.5	57
89	Ability of global climate models at a regional scale over Australia. International Journal of Global Environmental Issues, 2007, 7, 275.	0.1	2
90	Evaluation of the AR4 Climate Models' Simulated Daily Maximum Temperature, Minimum Temperature, and Precipitation over Australia Using Probability Density Functions. Journal of Climate, 2007, 20, 4356-4376.	3.2	571

ARTICLE IF CITATIONS

Projections and Hazards of Future Extreme Heat., 0,,.

L