Fernanda Ferreira Cruz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2128141/publications.pdf

Version: 2024-02-01

95 papers 3,555 citations

34 h-index

56 g-index

96 all docs 96
docs citations

96 times ranked 5491 citing authors

#	Article	IF	CITATIONS
1	Nitazoxanide in Patients Hospitalized With COVID-19 Pneumonia: A Multicentre, Randomized, Double-Blind, Placebo-Controlled Trial. Frontiers in Medicine, 2022, 9, 844728.	1.2	13
2	Pathogenesis of Multiple Organ Injury in COVID-19 and Potential Therapeutic Strategies. Frontiers in Physiology, 2021, 12, 593223.	1.3	113
3	Novel Synthetic and Natural Therapies for Traumatic Brain Injury. Current Neuropharmacology, 2021, 19, 1661-1687.	1.4	13
4	Immunomodulators in anesthesia. Current Opinion in Anaesthesiology, 2021, 34, 357-363.	0.9	7
5	Mitochondria-Rich Fraction Isolated From Mesenchymal Stromal Cells Reduces Lung and Distal Organ Injury in Experimental Sepsis*. Critical Care Medicine, 2021, 49, e880-e890.	0.4	15
6	Therapeutic potential of extracellular vesicles secreted by adipose tissue-derived mesenchymal stromal cells in acute kidney injury induced by sepsis. Cytotherapy, 2021, 23, S114.	0.3	0
7	Mesenchymal Stromal Cells From Emphysematous Donors and Their Extracellular Vesicles Are Unable to Reverse Cardiorespiratory Dysfunction in Experimental Severe Emphysema. Frontiers in Cell and Developmental Biology, 2021, 9, 661385.	1.8	14
8	Mitochondria isolated from mesenchymal stromal cells reduce lung and distal organ injury in experimental sepsis. Cytotherapy, 2021, 23, S46.	0.3	0
9	The impact of fluid status and decremental PEEP strategy on cardiac function and lung and kidney damage in mild-moderate experimental acute respiratory distress syndrome. Respiratory Research, 2021, 22, 214.	1.4	11
10	Noninvasive respiratory support and patient self-inflicted lung injury in COVID-19: a narrative review. British Journal of Anaesthesia, 2021, 127, 353-364.	1.5	64
11	Early use of nitazoxanide in mild COVID-19 disease: randomised, placebo-controlled trial. European Respiratory Journal, 2021, 58, 2003725.	3.1	117
12	Effects of propofol and its formulation components on macrophages and neutrophils in obese and lean animals. Pharmacology Research and Perspectives, 2021, 9, e00873.	1.1	2
13	Time-Controlled Adaptive Ventilation Versus Volume-Controlled Ventilation in Experimental Pneumonia. Critical Care Medicine, 2021, 49, 140-150.	0.4	8
14	Comparative effects of dexmedetomidine and propofol on brain and lung damage in experimental acute ischemic stroke. Scientific Reports, 2021, 11, 23133.	1.6	8
15	Immunomodulatory and Anti-fibrotic Effects Following the Infusion of Umbilical Cord Mesenchymal Stromal Cells in a Critically Ill Patient With COVID-19 Presenting Lung Fibrosis: A Case Report. Frontiers in Medicine, 2021, 8, 767291.	1.2	3
16	Mitochondria in Focus: From Function to Therapeutic Strategies in Chronic Lung Diseases. Frontiers in Immunology, 2021, 12, 782074.	2.2	22
17	The potential of mesenchymal stem cell therapy for chronic lung disease. Expert Review of Respiratory Medicine, 2020, 14, 31-39.	1.0	106
18	Multiple doses of adipose tissue-derived mesenchymal stromal cells induce immunosuppression in experimental asthma. Stem Cells Translational Medicine, 2020, 9, 250-260.	1.6	34

#	Article	IF	CITATIONS
19	Niclosamide attenuates lung vascular remodeling in experimental pulmonary arterial hypertension. European Journal of Pharmacology, 2020, 887, 173438.	1.7	9
20	Pros and cons of corticosteroid therapy for COVID-19 patients. Respiratory Physiology and Neurobiology, 2020, 280, 103492.	0.7	80
21	Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Disease 2019. ERJ Open Research, 2020, 6, 00123-2020.	1.1	2
22	In situ evidence of collagen V and signaling pathway of found inflammatory zone 1 (FIZZ1) is associated with silicotic granuloma in lung mice. Pathology Research and Practice, 2020, 216, 153094.	1.0	2
23	Combined therapy with adipose tissue-derived mesenchymal stromal cells and meglumine antimoniate controls lesion development and parasite load in murine cutaneous leishmaniasis caused by Leishmania amazonensis. Stem Cell Research and Therapy, 2020, 11, 374.	2.4	5
24	Iso-Oncotic Albumin Mitigates Brain and Kidney Injury in Experimental Focal Ischemic Stroke. Frontiers in Neurology, 2020, 11, 1001.	1.1	6
25	Differential effects of the cystic fibrosis lung inflammatory environment on mesenchymal stromal cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L908-L925.	1.3	20
26	Autologous bone marrow-derived mononuclear cell therapy in three patients with severe asthma. Stem Cell Research and Therapy, 2020, 11, 167.	2.4	14
27	Emerging therapies for COVID-19 pneumonia. Expert Opinion on Investigational Drugs, 2020, 29, 633-637.	1.9	13
28	Gut Microbiota in Acute Ischemic Stroke: From Pathophysiology to Therapeutic Implications. Frontiers in Neurology, 2020, 11, 598.	1.1	62
29	Nanoparticle-based thymulin gene therapy therapeutically reverses key pathology of experimental allergic asthma. Science Advances, 2020, 6, eaay7973.	4.7	31
30	Application of novel nanotechnologies in asthma. Annals of Translational Medicine, 2020, 8, 159-159.	0.7	4
31	Magnetic targeting increases mesenchymal stromal cell retention in lungs and enhances beneficial effects on pulmonary damage in experimental silicosis. Stem Cells Translational Medicine, 2020, 9, 1244-1256.	1.6	12
32	Current status of cell-based therapies for respiratory virus infections: applicability to COVID-19. European Respiratory Journal, 2020, 55, 2000858.	3.1	193
33	Adipose-derived stem cells and adipose-derived stem cell-conditioned medium modulate in situ imbalance between collagen I- and collagen V-mediated IL-17 immune response recovering bleomycin pulmonary fibrosis. Histology and Histopathology, 2020, 35, 289-301.	0.5	8
34	Immunomodulatory effects of anesthetic agents in perioperative medicine. Minerva Anestesiologica, 2020, 86, 181-195.	0.6	7
35	Cell therapy for acute respiratory distress syndrome patients: the START study. Journal of Thoracic Disease, 2019, 11, S1329-S1332.	0.6	13
36	Effects of crystalloid, hyper-oncotic albumin, and iso-oncotic albumin on lung and kidney damage in experimental acute lung injury. Respiratory Research, 2019, 20, 155.	1.4	12

#	Article	IF	CITATIONS
37	Effects of the FGF receptorâ€1 inhibitor, infigratinib, with or without sildenafil, in experimental pulmonary arterial hypertension. British Journal of Pharmacology, 2019, 176, 4462-4473.	2.7	9
38	Effects of Obesity on Pulmonary Inflammation and Remodeling in Experimental Moderate Acute Lung Injury. Frontiers in Immunology, 2019, 10, 1215.	2.2	31
39	Mesenchymal Stromal Cells Are More Effective Than Their Extracellular Vesicles at Reducing Lung Injury Regardless of Acute Respiratory Distress Syndrome Etiology. Stem Cells International, 2019, 2019, 1-15.	1.2	47
40	Lung inflammatory environments differentially alter mesenchymal stromal cell behavior. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L823-L831.	1.3	36
41	Safety and efficacy profile of cryopreserved mesenchymal stem cells for the treatment of acute respiratory distress syndrome Cytotherapy, 2019, 21, e12.	0.3	O
42	Intraoperative immunomodulatory effects of sevoflurane versus total intravenous anesthesia with propofol in bariatric surgery (the OBESITA trial): study protocol for a randomized controlled pilot trial. Trials, 2019, 20, 300.	0.7	4
43	Current understanding of the immunosuppressive properties of mesenchymal stromal cells. Journal of Molecular Medicine, 2019, 97, 605-618.	1.7	81
44	Gradually Increasing Tidal Volume May Mitigate Experimental Lung Injury in Rats. Anesthesiology, 2019, 130, 767-777.	1.3	22
45	The Potential of Factors Released from Mesenchymal Stromal Cells as Therapeutic Agents in the Lung. , 2019, , 57-70.		1
46	Biological Response to Time-Controlled Adaptive Ventilation Depends on Acute Respiratory Distress Syndrome Etiology*. Critical Care Medicine, 2018, 46, e609-e617.	0.4	30
47	Ventilator-induced lung injury during controlled ventilation in patients with acute respiratory distress syndrome: less is probably better. Expert Review of Respiratory Medicine, 2018, 12, 403-414.	1.0	41
48	Therapeutic administration of bone marrowâ€derived mesenchymal stromal cells reduces airway inflammation without upâ€regulating Tregs in experimental asthma. Clinical and Experimental Allergy, 2018, 48, 205-216.	1.4	34
49	Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome*. Critical Care Medicine, 2018, 46, e132-e140.	0.4	59
50	Impact of one versus two doses of mesenchymal stromal cells on lung and cardiovascular repair in experimental emphysema. Stem Cell Research and Therapy, 2018, 9, 296.	2.4	22
51	Focal ischemic stroke leads to lung injury and reduces alveolar macrophage phagocytic capability in rats. Critical Care, 2018, 22, 249.	2.5	52
52	Preparation of Extracellular Vesicles from Mesenchymal Stem Cells. Stem Cells in Clinical Applications, 2018, , 37-51.	0.4	0
53	hMSCs as an alternative therapeutic option for asthma with neutrophil mediated inflammation. Experimental and Molecular Medicine, 2018, 50, 1-2.	3.2	3
54	Impact of different intratracheal flows during lung decellularization on extracellular matrix composition and mechanics. Regenerative Medicine, 2018, 13, 519-530.	0.8	5

#	Article	IF	Citations
55	Strategies to improve the therapeutic effects of mesenchymal stromal cells in respiratory diseases. Stem Cell Research and Therapy, 2018, 9, 45.	2.4	95
56	Effects of static magnetic fields on natural or magnetized mesenchymal stromal cells: Repercussions for magnetic targeting. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2075-2085.	1.7	17
57	Sevoflurane, Compared With Isoflurane, Minimizes Lung Damage in Pulmonary but Not in Extrapulmonary Acute Respiratory Distress Syndrome in Rats. Anesthesia and Analgesia, 2017, 125, 491-498.	1.1	12
58	Bone Marrow, Adipose, and Lung Tissue-Derived Murine Mesenchymal Stromal Cells Release Different Mediators and Differentially Affect Airway and Lung Parenchyma in Experimental Asthma. Stem Cells Translational Medicine, 2017, 6, 1557-1567.	1.6	74
59	Anti-inflammatory properties of anesthetic agents. Critical Care, 2017, 21, 67.	2.5	119
60	Magnetic targeting as a strategy to enhance therapeutic effects of mesenchymal stromal cells. Stem Cell Research and Therapy, 2017, 8, 58.	2.4	44
61	Combined Bone Marrow-Derived Mesenchymal Stromal Cell Therapy and One-Way Endobronchial Valve Placement in Patients with Pulmonary Emphysema: A Phase I Clinical Trial. Stem Cells Translational Medicine, 2017, 6, 962-969.	1.6	68
62	New perspectives in nanotherapeutics for chronic respiratory diseases. Biophysical Reviews, 2017, 9, 793-803.	1.5	54
63	Collection, processing and freezing of equine bone marrow cells. Cryobiology, 2017, 78, 95-100.	0.3	6
64	Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Research and Therapy, 2017, 8, 151.	2.4	110
65	Bosutinib Therapy Ameliorates Lung Inflammation and Fibrosis in Experimental Silicosis. Frontiers in Physiology, 2017, 8, 159.	1.3	52
66	Mesenchymal stromal cell therapy reduces lung inflammation and vascular remodeling and improves hemodynamics in experimental pulmonary arterial hypertension. Stem Cell Research and Therapy, 2017, 8, 220.	2.4	52
67	Stem-cell extracellular vesicles and lung repair. Stem Cell Investigation, 2017, 4, 78-78.	1.3	39
68	Early impact of abdominal compartment syndrome on liver, kidney and lung damage in a rodent model. Anaesthesiology Intensive Therapy, 2017, 49, 130-138.	0.4	8
69	Dasatinib Reduces Lung Inflammation and Fibrosis in Acute Experimental Silicosis. PLoS ONE, 2016, 11, e0147005.	1.1	58
70	Comparison between Variable and Conventional Volume-Controlled Ventilation on Cardiorespiratory Parameters in Experimental Emphysema. Frontiers in Physiology, 2016, 7, 277.	1.3	12
71	CD11b+ and Sca-1+ Cells Exert the Main Beneficial Effects of Systemically Administered Bone Marrow-Derived Mononuclear Cells in a Murine Model of Mixed Th2/Th17 Allergic Airway Inflammation. Stem Cells Translational Medicine, 2016, 5, 488-499.	1.6	27
72	Prospects and progress in cell therapy for acute respiratory distress syndrome. Expert Opinion on Biological Therapy, 2016, 16, 1353-1360.	1.4	30

#	Article	IF	Citations
7 3	The tyrosine kinase inhibitor dasatinib reduces lung inflammation and remodelling in experimental allergic asthma. British Journal of Pharmacology, 2016, 173, 1236-1247.	2.7	40
74	Mesenchymal Stromal Cell-Based Therapies for Lung Diseases and Critical Illnesses. , 2015, , 399-433.		0
75	Hypoxic preconditioning enhances mesenchymal stromal cell lung repair capacity. Stem Cell Research and Therapy, 2015, 6, 130.	2.4	19
76	Freshly Thawed and Continuously Cultured Human Bone Marrow-Derived Mesenchymal Stromal Cells Comparably Ameliorate Allergic Airways Inflammation in Immunocompetent Mice. Stem Cells Translational Medicine, 2015, 4, 615-624.	1.6	71
77	Systemic Administration of Human Bone Marrow-Derived Mesenchymal Stromal Cell Extracellular Vesicles Ameliorates <i>Aspergillus</i> Hyphal Extract-Induced Allergic Airway Inflammation in Immunocompetent Mice. Stem Cells Translational Medicine, 2015, 4, 1302-1316.	1.6	191
78	Antitumor effects of TRAIL-expressing mesenchymal stromal cells in a mouse xenograft model of human mesothelioma. Cancer Gene Therapy, 2015, 22, 44-54.	2.2	31
79	Challenges of Cell Therapy for Lung Diseases and Critical Illnesses. Pancreatic Islet Biology, 2015, , 93-112.	0.1	O
80	Mesenchymal Stromal Cells MediateAspergillusHyphal Extract-Induced Allergic Airway Inflammation by Inhibition of the Th17 Signaling Pathway. Stem Cells Translational Medicine, 2014, 3, 194-205.	1.6	66
81	Multipotent adult progenitor cells decrease cold ischemic injury in ex vivo perfused human lungs: an initial pilot and feasibility study. Transplantation Research, 2014, 3, 19.	1.5	52
82	Effects of different mesenchymal stromal cell sources and delivery routes in experimental emphysema. Respiratory Research, 2014, 15, 118.	1.4	141
83	Effects of sigh during pressure control and pressure support ventilation in pulmonary and extrapulmonary mild acute lung injury. Critical Care, 2014, 18, 474.	2.5	28
84	Biphasic positive airway pressure minimizes biological impact on lung tissue in mild acute lung injury independent of etiology. Critical Care, 2013, 17, R228.	2.5	19
85	Bone marrow mononuclear cell therapy in experimental allergic asthma: Intratracheal versus intravenous administration. Respiratory Physiology and Neurobiology, 2013, 185, 615-624.	0.7	28
86	Oleanolic acid improves pulmonary morphofunctional parameters in experimental sepsis by modulating oxidative and apoptotic processes. Respiratory Physiology and Neurobiology, 2013, 189, 484-490.	0.7	10
87	Insult-dependent effect of bone marrow cell therapy on inflammatory response in a murine model of extrapulmonary acute respiratory distress syndrome. Stem Cell Research and Therapy, 2013, 4, 123.	2.4	17
88	Protective effects of bone marrow mononuclear cell therapy on lung and heart in an elastase-induced emphysema model. Respiratory Physiology and Neurobiology, 2012, 182, 26-36.	0.7	46
89	Effects of bone marrow-derived mononuclear cells on airway and lung parenchyma remodeling in a murine model of chronic allergic inflammation. Respiratory Physiology and Neurobiology, 2011, 175, 153-163.	0.7	30
90	Early and late effects of bone marrow-derived mononuclear cell therapy on lung and distal organs in experimental sepsis. Respiratory Physiology and Neurobiology, 2011, 178, 304-314.	0.7	25

#	Article	IF	CITATIONS
91	Effects of oleanolic acid on pulmonary morphofunctional and biochemical variables in experimental acute lung injury. Respiratory Physiology and Neurobiology, 2011, 179, 129-136.	0.7	21
92	Bone marrow-derived mononuclear cell therapy attenuates silica-induced lung fibrosis. European Respiratory Journal, 2011, 37, 1217-1225.	3.1	51
93	Bone marrow-derived mononuclear cell therapy in experimental pulmonary and extrapulmonary acute lung injury. Critical Care Medicine, 2010, 38, 1733-1741.	0.4	60
94	Hypervolemia induces and potentiates lung damage after recruitment maneuver in a model of sepsis-induced acute lung injury. Critical Care, 2010, 14, R114.	2.5	41
95	Evaluation of coffee reference genes for relative expression studies by quantitative real-time RT-PCR. Molecular Breeding, 2009, 23, 607-616.	1.0	168