Pedram Parandoush

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2128092/publications.pdf

Version: 2024-02-01

14 1,402 11 14 papers citations h-index 14 1620

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	A review on additive manufacturing of polymer-fiber composites. Composite Structures, 2017, 182, 36-53.	5.8	817
2	A review of modeling and simulation of laser beam machining. International Journal of Machine Tools and Manufacture, 2014, 85, 135-145.	13.4	154
3	Laser assisted additive manufacturing of continuous fiber reinforced thermoplastic composites. Materials and Design, 2017, 131, 186-195.	7.0	85
4	3D Printing of Ultrahigh Strength Continuous Carbon Fiber Composites. Advanced Engineering Materials, 2019, 21, 1800622.	3.5	69
5	A Fuzzy Logic-Based Prediction Model for Kerf Width in Laser Beam Machining. Materials and Manufacturing Processes, 2016, 31, 679-684.	4.7	55
6	Biomimetic 3D Printing of Hierarchical and Interconnected Porous Hydroxyapatite Structures with High Mechanical Strength for Bone Cell Culture. Advanced Engineering Materials, 2019, 21, 1800678.	3.5	55
7	Additive manufacturing of continuous carbon fiber reinforced poly-ether-ether-ketone with ultrahigh mechanical properties. Polymer Testing, 2020, 88, 106563.	4.8	49
8	Laser additive manufacturing bulk graphene–copper nanocomposites. Nanotechnology, 2017, 28, 445705.	2.6	30
9	Additive manufacturing of continuous carbon fiber reinforced epoxy composite with graphene enhanced interlayer bond toward ⟨scp⟩ultraâ€high⟨/scp⟩ mechanical properties. Polymer Composites, 2022, 43, 934-945.	4.6	25
10	Ultrafast printing of continuous fiberâ€reinforced thermoplastic composites with ultrahigh mechanical performance by ultrasonicâ€assisted laminated object manufacturing. Polymer Composites, 2020, 41, 4706-4715.	4.6	23
11	Conductive and highly compressible MXene aerogels with ordered microstructures as high-capacity electrodes for Li-ion capacitors. Materials Today Advances, 2021, 9, 100135.	5.2	19
12	Additive manufacturing embraces big data. Progress in Additive Manufacturing, 2021, 6, 181-197.	4.8	8
13	A finishing process via ultrasonic drilling for additively manufactured carbon fiber composites. Rapid Prototyping Journal, 2021, 27, 754-768.	3.2	7
14	Numerical and intelligent analysis of silicon nitride laser grooving. International Journal of Advanced Manufacturing Technology, 2015, 79, 1849-1859.	3.0	6