
Luis F Guido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2127402/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on the fate of phenolic compounds during malting and brewing: Technological strategies and beer styles. Food Chemistry, 2022, 372, 131093.	4.2	15
2	Impact of temperature during beer storage on beer chemical profile. LWT - Food Science and Technology, 2022, 154, 112688.	2.5	14
3	Profiling the volatile carbonyl compounds of barley and malt samples using a low-pressure assisted extraction system. Food Control, 2021, 121, 107568.	2.8	11

Antiangiogenic and Antioxidant In Vitro Properties of Hydroethanolic Extract from açaÃ-(Euterpe) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

5	Gas-Diffusion Microextraction (GDME) Combined with Derivatization for Assessing Beer Staling Aldehydes: Validation and Application. Foods, 2021, 10, 1704.	1.9	5
6	Development of a new procedure for the determination of the reactivity of brandies used in wine fortification. Oeno One, 2021, 55, 161-172.	0.7	1
7	Online HPLC-DPPH screening method for evaluation of radical scavenging phenols extracted from Moringa oleifera leaves. South African Journal of Botany, 2020, 129, 146-154.	1.2	27
8	Brewing and Craft Beer. Beverages, 2019, 5, 51.	1.3	14
9	Determination of Acrylamide in Biscuits by High-Resolution Orbitrap Mass Spectrometry: A Novel Application. Foods, 2019, 8, 597.	1.9	23
10	Measurement of catechin-7- <i>O</i> -glucoside from barley to malt. Journal of the Institute of Brewing, 2018, 124, 359-364.	0.8	2
11	Xanthohumol inhibits cell proliferation and induces apoptosis in human thyroid cells. Food and Chemical Toxicology, 2018, 121, 450-457.	1.8	16
12	Impact of Wort Amino Acids on Beer Flavour: A Review. Fermentation, 2018, 4, 23.	1.4	91
13	Techniques for Extraction of Brewer's Spent Grain Polyphenols: a Review. Food and Bioprocess Technology, 2017, 10, 1192-1209.	2.6	62
14	Brewer's Spent Grains Protects against Oxidative DNA Damage in Saccharomyces cerevisiae. Journal of Agricultural Science, 2017, 9, 12.	0.1	1
15	Sulfites in beer: reviewing regulation, analysis and role. Scientia Agricola, 2016, 73, 189-197.	0.6	53
16	The impact of xanthohumol on a brewing yeast's viability, vitality and metabolite formation. Journal of the Institute of Brewing, 2016, 122, 363-363.	0.8	0
17	Overall Antioxidant Properties of Malt and How They Are Influenced by the Individual Constituents of Barley and the Malting Process. Comprehensive Reviews in Food Science and Food Safety, 2016, 15, 927-943.	5.9	52
18	Implications of Xanthohumol Enrichment on the Oxidative Stability of Pale and Dark Beers. Journal of the American Society of Brewing Chemists, 2016, 74, 24-29.	0.8	3

Luis F Guido

#	Article	IF	CITATIONS
19	High molecular weight compounds generated by roasting barley malt are pro-oxidants in metal-catalyzed oxidations. European Food Research and Technology, 2016, 242, 1545-1553.	1.6	21
20	Response surface evaluation of microwave-assisted extraction conditions for Lycium barbarum bioactive compounds. Innovative Food Science and Emerging Technologies, 2016, 33, 319-326.	2.7	49
21	Dose-Dependent Protective and Inductive Effects of Xanthohumol on Oxidative DNA Damage in Saccharomyces cerevisiae. Food Technology and Biotechnology, 2016, 54, 60-69.	0.9	12
22	Determination of Phenolic Content in Different Barley Varieties and Corresponding Malts by Liquid Chromatography-diode Array Detection-Electrospray Ionization Tandem Mass Spectrometry. Antioxidants, 2015, 4, 563-576.	2.2	67
23	Monomeric and oligomeric flavan-3-ols and antioxidant activity of leaves from different Laurus sp Food and Function, 2015, 6, 1944-1949.	2.1	13
24	Study of Electrochemical Oxidation of Xanthohumol by Ultra-Performance Liquid Chromatography Coupled to High Resolution Tandem Mass Spectrometry and Ion Mobility Mass Spectrometry. Chromatographia, 2015, 78, 1233-1243.	0.7	3
25	Further insights into the role of melanoidins on the antioxidant potential of barley malt. Food Chemistry, 2014, 160, 127-133.	4.2	48
26	Transthyretin Stabilization by Iododiflunisal Promotes Amyloid-β Peptide Clearance, Decreases its Deposition, and Ameliorates Cognitive Deficits in an Alzheimer's Disease Mouse Model. Journal of Alzheimer's Disease, 2014, 39, 357-370.	1.2	45
27	Composition of pectic polysaccharides in a Portuguese apple (Malus domestica Borkh. cv Bravo de) Tj ETQq1 1 C).784314 ı 0.6	gBT /Overloc
28	Determination of Aldoses, Deoxy-aldoses and Uronic Acids Content in a Pectin-Rich Extract by RP-HPLC-FLD after p-AMBA Derivatization. Chromatographia, 2013, 76, 1117-1124.	0.7	5
29	Brewer's spent grain from different types of malt: Evaluation of the antioxidant activity and identification of the major phenolic compounds. Food Research International, 2013, 54, 382-388.	2.9	106
30	Chemical sensing of chalcones by voltammetry: trans-Chalcone, cardamonin and xanthohumol. Electrochimica Acta, 2013, 90, 440-444.	2.6	26
31	EFFECT OF XANTHOHUMOL ON BREWING YEAST CELLS. Acta Horticulturae, 2013, , 233-238.	0.1	0
32	Malting. Contemporary Food Engineering, 2013, , .	0.2	4
33	A novel application of microwave-assisted extraction of polyphenols from brewer's spent grain with HPLC-DAD-MS analysis. Analytical and Bioanalytical Chemistry, 2012, 403, 1019-1029.	1.9	81
34	Novel Application of Square-Wave Adsorptive-Stripping Voltammetry for the Determination of Xanthohumol in Spent Hops. Journal of Agricultural and Food Chemistry, 2011, 59, 7654-7658.	2.4	12
35	Influence of malt on the xanthohumol and isoxanthohumol behavior in pale and dark beers: A micro-scale approach. Food Research International, 2011, 44, 351-359.	2.9	28
36	The Impact of Xanthohumol on a Brewing Yeast's Viability, Vitality and Metabolite Formation. Journal of the Institute of Brewing, 2011, 117, 368-376.	0.8	11

Luis F Guido

#	Article	IF	CITATIONS
37	Determination of galacturonic acid content in pectin from fruit juices by liquid chromatographydiode array detection-electrospray ionization tandem mass spectrometry. Open Chemistry, 2010, 8, 1236-1243.	1.0	6
38	Isolation of phenolic compounds from hop extracts using polyvinylpolypyrrolidone: Characterization by high-performance liquid chromatography–diode array detection–electrospray tandem mass spectrometry. Journal of Chromatography A, 2010, 1217, 3258-3268.	1.8	99
39	Barley and malt polyphenols and their antioxidant properties Kvasný PrÅ⁻mysl, 2010, 56, 160-163.	0.1	1
40	Fundamentals and Health Benefits of Xanthohumol, a Natural Product Derived from Hops and Beer. Natural Product Communications, 2009, 4, 1934578X0900400.	0.2	49
41	Fundamentals and health benefits of xanthohumol, a natural product derived from hops and beer. Natural Product Communications, 2009, 4, 591-610.	0.2	68
42	Characterization of monomeric and oligomeric flavan-3-ols from barley and malt by liquid chromatography–ultraviolet detection–electrospray ionization mass spectrometry. Journal of Chromatography A, 2008, 1189, 398-405.	1.8	66
43	Antioxidant Properties of Free, Soluble Ester and Insoluble-Bound Phenolic Compounds in Different Barley Varieties and Corresponding Malts. Journal of the Institute of Brewing, 2008, 114, 27-33.	0.8	105
44	The Impact of a Xanthohumol-Enriched Hop Product on the Behavior of Xanthohumol and Isoxanthohumol in Pale and Dark Beers: A Pilot Scale Approach. Journal of the Institute of Brewing, 2008, 114, 246-256.	0.8	43
45	Detection and Quantification of Provitamin D ₂ and Vitamin D ₂ in Hop (Humulus lupulus L.) by Liquid Chromatography–Diode Array Detection–Electrospray Ionization Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2007, 55, 7995-8002.	2.4	17
46	Correlation of Malt Quality Parameters and Beer Flavor Stability:Â Multivariate Analysis. Journal of Agricultural and Food Chemistry, 2007, 55, 728-733.	2.4	43
47	Analysis of xanthohumol and isoxanthohumol in different hop products by liquid chromatography-diode array detection-electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 2007, 1150, 295-301.	1.8	56
48	Predicting the organoleptic stability of beer from chemical data using multivariate analysis. European Food Research and Technology, 2007, 226, 57-62.	1.6	13
49	The impact of sulphur dioxide and oxygen on the behaviour of 2-furaldehyde in beer: an industrial approach. International Journal of Food Science and Technology, 2006, 41, 545-552.	1.3	9
50	Determination of β-damascenone in alcoholic beverages by reversed-phase liquid chromatography with ultraviolet detection. Food Chemistry, 2006, 99, 51-56.	4.2	12
51	An early development of the nonenal potential in the malting process. European Food Research and Technology, 2005, 220, 200-206.	1.6	30
52	Simultaneous determination of E-2-nonenal and \hat{I}^2 -damascenone in beer by reversed-phase liquid chromatography with UV detection. Journal of Chromatography A, 2004, 1032, 17-22.	1.8	29
53	The impact of the physiological condition of the pitching yeast on beer flavour stability: an industrial approach. Food Chemistry, 2004, 87, 187-193.	4.2	55
54	Determination of E-2-nonenal by high-performance liquid chromatography with UV detection. Journal of Chromatography A, 2003, 985, 395-402.	1.8	29

#	Article	IF	CITATIONS
55	Voltammetric Assay for the Aging of Beer. Journal of Agricultural and Food Chemistry, 2003, 51, 3911-3915.	2.4	25