Eric Spierings

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2127062/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetics-first approach improves diagnostics of ESKD patients <50 years old. Nephrology Dialysis Transplantation, 2022, 37, 349-357.	0.4	27
2	Assessment of human leukocyte antigen matching algorithm PIRCHEâ€II on liver transplantation outcomes. Liver Transplantation, 2022, 28, 1356-1366.	1.3	6
3	HLA-DQ heterodimers in hematopoietic cell transplantation. Blood, 2022, 139, 3009-3017.	0.6	17
4	The MHC class I MICA gene is a histocompatibility antigen in kidney transplantation. Nature Medicine, 2022, 28, 989-998.	15.2	20
5	Protective HLA Alleles Recruit Biased and Largely Similar Antigen-Specific T Cell Repertoires across Different Outcomes in HIV Infection. Journal of Immunology, 2022, 208, 3-15.	0.4	2
6	Standard reference sequences for submission of <scp>HLA</scp> genotyping for the 18th International HLA and Immunogenetics Workshop. Hla, 2021, 97, 512-519.	0.4	6
7	Clinical Significance of Shared T Cell Epitope Analysis in Early De Novo Donor-Specific Anti-HLA Antibody Production After Kidney Transplantation and Comparison With Shared B cell Epitope Analysis. Frontiers in Immunology, 2021, 12, 621138.	2.2	11
8	Next-Generation HLA Sequence Analysis Uncovers Shared Risk Alleles Between Clinically Distinct Forms of Childhood Uveitis. , 2021, 62, 19.		6
9	Computational Eurotransplant kidney allocation simulations demonstrate the feasibility and benefit of T-cell epitope matching. PLoS Computational Biology, 2021, 17, e1009248.	1.5	11
10	KIR3DS1 directs NK cell–mediated protection against human adenovirus infections. Science Immunology, 2021, 6, eabe2942.	5.6	8
11	T-Cell Epitopes Shared Between Immunizing HLA and Donor HLA Associate With Graft Failure After Kidney Transplantation. Frontiers in Immunology, 2021, 12, 784040.	2.2	8
12	Peptides Derived From Mismatched Paternal Human Leukocyte Antigen Predicted to Be Presented by HLA-DRB1, -DRB3/4/5, -DQ, and -DP Induce Child-Specific Antibodies in Pregnant Women. Frontiers in Immunology, 2021, 12, 797360.	2.2	5
13	Role of HLA-B exon 1 in graft-versus-host disease after unrelated haemopoietic cell transplantation: a retrospective cohort study. Lancet Haematology,the, 2020, 7, e50-e60.	2.2	53
14	PIRCHE-II: an algorithm to predict indirectly recognizable HLA epitopes in solid organ transplantation. Immunogenetics, 2020, 72, 119-129.	1.2	46
15	Analysis of T and B Cell Epitopes to Predict the Risk of de novo Donor-Specific Antibody (DSA) Production After Kidney Transplantation: A Two-Center Retrospective Cohort Study. Frontiers in Immunology, 2020, 11, 2000.	2.2	26
16	Compatibility at amino acid position 98 of MICB reduces the incidence of graft-versus-host disease in conjunction with the CMV status. Bone Marrow Transplantation, 2020, 55, 1367-1378.	1.3	9
17	γδT-cell Receptors Derived from Breast Cancer–Infiltrating T Lymphocytes Mediate Antitumor Reactivity. Cancer Immunology Research, 2020, 8, 530-543.	1.6	42
18	Exploratory Study of Predicted Indirectly ReCognizable HLA Epitopes in Mismatched Hematopoietic Cell Transplantations. Frontiers in Immunology, 2019, 10, 880.	2.2	17

#	Article	IF	CITATIONS
19	Allocation to highly sensitized patients based on acceptable mismatches results in low rejection rates comparable to nonsensitized patients. American Journal of Transplantation, 2019, 19, 2926-2933.	2.6	32
20	Antibodies against ARHGDIB are associated with long-term kidney graft loss. American Journal of Transplantation, 2019, 19, 3335-3344.	2.6	46
21	HLA-DQ Typing Kits in Diagnosis and Screening for Celiac Disease. Genetic Testing and Molecular Biomarkers, 2019, 23, 418-422.	0.3	2
22	Next-generation HLA typing of 382 International Histocompatibility Working Group reference B-lymphoblastoid cell lines: Report from the 17th International HLA and Immunogenetics Workshop. Human Immunology, 2019, 80, 449-460.	1,2	20
23	Quality control project of NGS HLA genotyping for the 17th International HLA and Immunogenetics Workshop. Human Immunology, 2019, 80, 228-236.	1.2	27
24	Toward a Sensible Single-antigen Bead Cutoff Based on Kidney Graft Survival. Transplantation, 2019, 103, 789-797.	0.5	31
25	Effect of initial immunosuppression on long-term kidney transplant outcome in immunological low-risk patients. Nephrology Dialysis Transplantation, 2019, 34, 1417-1422.	0.4	7
26	A paired kidney analysis on the impact of pre-transplant anti-HLA antibodies on graft survival. Nephrology Dialysis Transplantation, 2019, 34, 1056-1063.	0.4	17
27	Histocompatibility. , 2019, , 61-68.		4
28	Matching donor and recipient based on predicted indirectly recognizable human leucocyte antigen epitopes. International Journal of Immunogenetics, 2018, 45, 41-53.	0.8	35
29	Differential effects of donor-specific HLA antibodies in living versus deceased donor transplant. American Journal of Transplantation, 2018, 18, 2274-2284.	2.6	65
30	Invited letter in response to "Predicted indirectly recognizable HLA epitopes (PIRCHE): Only the tip of the iceberg?― American Journal of Transplantation, 2018, 18, 523-524.	2.6	2
31	Development and Validation of a Multiplex Non-HLA Antibody Assay for the Screening of Kidney Transplant Recipients. Frontiers in Immunology, 2018, 9, 3002.	2.2	25
32	Rejection Prophylaxis in Corneal Transplant. Deutsches Ärzteblatt International, 2018, 115, 259-265.	0.6	7
33	Pretransplant C3d-Fixing Donor-Specific Anti-HLA Antibodies Are Not Associated with Increased Risk for Kidney Graft Failure. Journal of the American Society of Nephrology: JASN, 2018, 29, 2279-2285.	3.0	25
34	PIRCHE-II Is Related to Graft Failure after Kidney Transplantation. Frontiers in Immunology, 2018, 9, 321.	2.2	63
35	PD-1+CD8+ T cells are clonally expanding effectors in human chronic inflammation. Journal of Clinical Investigation, 2018, 128, 4669-4681.	3.9	98
36	Noninvasive Imaging of Human Immune Responses in a Human Xenograft Model of Graft-Versus-Host Disease. Journal of Nuclear Medicine, 2017, 58, 1003-1008.	2.8	46

#	Article	IF	CITATIONS
37	Donor–Recipient Matching Based on Predicted Indirectly Recognizable HLA Epitopes Independently Predicts the Incidence of De Novo Donor-Specific HLA Antibodies Following Renal Transplantation. American Journal of Transplantation, 2017, 17, 3076-3086.	2.6	117
38	Identifying Permissible HLA-Mismatches in Unrelated-Donor Hematopoietic Stem-Cell Transplantation Using Predicted Indirectly Recognizable HLA Epitopes. Biology of Blood and Marrow Transplantation, 2017, 23, S107-S108.	2.0	0
39	Analysis of Predicted Indirectly Recognizable HLA Epitopes (PIRCHE) in Mismatched Unrelated Donor Hematopoietic Stem Cell Transplants (HCT): A Center for International Blood and Marrow Transplant Research (CIBMTR) Cohort Study. Biology of Blood and Marrow Transplantation, 2017, 23, S201.	2.0	1
40	P120 Predicted indirectly recognizable HLA epitopes presented by HLA-DRB1 are related to HLA antibody formation during pregnancy. Human Immunology, 2017, 78, 141.	1.2	0
41	SO025DONOR RECIPIENT MATCHING BASED ON HLA EPITOPES IMPROVES OUTCOME IN KIDNEY TRANSPLANT RECIPIENTS. Nephrology Dialysis Transplantation, 2017, 32, iii15-iii15.	0.4	0
42	OR41 PIRCHE-II: A novel tool to identify permissible HLA mismatches in kidney transplantation. Human Immunology, 2017, 78, 39.	1.2	1
43	The increase of the global donor inventory is of limited benefit to patients of non-Northwestern European descent. Haematologica, 2017, 102, 176-183.	1.7	22
44	A phase I/II minor histocompatibility antigen-loaded dendritic cell vaccination trial to safely improve the efficacy of donor lymphocyte infusions in myeloma. Bone Marrow Transplantation, 2017, 52, 1378-1383.	1.3	21
45	Efficacy of host-dendritic cell vaccinations with or without minor histocompatibility antigen loading, combined with donor lymphocyte infusion in multiple myeloma patients. Bone Marrow Transplantation, 2017, 52, 228-237.	1.3	25
46	SO024DONOR RECIPIENT MATCHING BASED ON INDIRECTLY RECOGNIZABLE HLA EPITOPES INDEPENDENTLY PREDICTS OUTCOME AFTER KIDNEY TRANSPLANTATION. Nephrology Dialysis Transplantation, 2017, 32, iii15-iii15.	0.4	0
47	Computational Approaches to Facilitate Epitope-Based HLA Matching in Solid Organ Transplantation. Journal of Immunology Research, 2017, 2017, 1-9.	0.9	38
48	A Previous Miscarriage and a Previous Successful Pregnancy Have a Different Impact on HLA Antibody Formation during a Subsequent Successful Pregnancy. Frontiers in Immunology, 2016, 7, 571.	2.2	5
49	Completion of HLA protein sequences by automated homology-based nearest-neighbor extrapolation of HLA database sequences. Human Immunology, 2016, 77, 1030-1036.	1.2	9
50	Autologous stem cell transplantation aids autoimmune patients by functional renewal and TCR diversification of regulatory T cells. Blood, 2016, 127, 91-101.	0.6	87
51	How can we reduce costs of solidâ€phase multiplexâ€bead assays used to determine antiâ€ <scp>HLA</scp> antibodies?. Hla, 2016, 88, 110-119.	0.4	15
52	Matching for the nonconventional MHC-I MICA gene significantly reduces the incidence of acute and chronic GVHD. Blood, 2016, 128, 1979-1986.	0.6	66
53	Immunogenicity of Anti-HLA Antibodies in Pancreas and Islet Transplantation. Cell Transplantation, 2016, 25, 2041-2050.	1.2	38
54	Predicted Indirectly ReCognizable HLA Epitopes Class I Promote Antileukemia Responses after Cord Blood Transplantation: Indications for a Potential Novel Donor Selection Tool. Biology of Blood and Marrow Transplantation, 2016, 22, 170-173.	2.0	18

#	Article	IF	CITATIONS
55	Predicted Indirectly Recognizable Hla Epitopes (PIRCHE) Provide a Novel Strategy to Individualize Donor Selection That Optimizes Survival Chances. Biology of Blood and Marrow Transplantation, 2015, 21, S350-S351.	2.0	0
56	Predicted Indirectly Recognizable HLA Epitopes Presented by HLA-DRB1 Are Related to HLA Antibody Formation During Pregnancy. American Journal of Transplantation, 2015, 15, 3112-3122.	2.6	41
57	Immunogenetic factors in the selection of cord blood units for transplantation: current search strategies and future perspectives. Cytotherapy, 2015, 17, 702-710.	0.3	1
58	The number of T cell allo-epitopes associates with CD4+ and CD8+ T-cell infiltration in pediatric cutaneous GVHD. Cellular Immunology, 2015, 295, 112-117.	1.4	4
59	Biomarker profiling of steroid-resistant acute GVHD in patients after infusion of mesenchymal stromal cells. Leukemia, 2015, 29, 1839-1846.	3.3	64
60	Immune Reconstitution and Clinical Outcome after $\hat{1}\pm \hat{1}^2$ T-Cell Depleted Allogeneic Stem Cell Transplantation from Matched Related and Unrelated Donors. Blood, 2015, 126, 4313-4313.	0.6	1
61	Functional antigen matching in corneal transplantation: matching for the HLA-A, -B and -DRB1 antigens (FANCY) – study protocol. BMC Ophthalmology, 2014, 14, 156.	0.6	8
62	Complete donor chimerism is a prerequisite for the effect of Predicted Indirectly ReCognizable HLA Epitopes (PIRCHE) on acute graft-versus-host disease. Chimerism, 2014, 5, 94-98.	0.7	7
63	The PROCARE consortium: Toward an improved allocation strategy for kidney allografts. Transplant Immunology, 2014, 31, 184-190.	0.6	25
64	Identification of minor histocompatibility antigens based on the 1000 Genomes Project. Haematologica, 2014, 99, 1854-1859.	1.7	43
65	Predicting Alloreactivity in Transplantation. Journal of Immunology Research, 2014, 2014, 1-12.	0.9	56
66	Indirectly Recognized HLA-C Mismatches and Their Potential Role in Transplant Outcome. Frontiers in Immunology, 2014, 5, 210.	2.2	21
67	Minor histocompatibility antigens: past, present, and future. Tissue Antigens, 2014, 84, 374-360.	1.0	80
68	Refinement of the Definition of Permissible HLA-DPB1 Mismatches with Predicted Indirectly ReCognizable HLA-DPB1 Epitopes. Biology of Blood and Marrow Transplantation, 2014, 20, 1705-1710.	2.0	31
69	Treatment of steroid resistant grade II to IV acute GVHD by infusion of mesenchymal stromal cells expanded with platelet lysate - a phase I/II study. Cytotherapy, 2014, 16, S13.	0.3	1
70	A Universal Approach to Identify Permissible HLA-Mismatches in HSCT: Predicted Indirectly Recognizable HLA Epitopes. Biology of Blood and Marrow Transplantation, 2014, 20, S141-S142.	2.0	0
71	Molecular Typing Methods for Minor Histocompatibility Antigens. Methods in Molecular Biology, 2014, 1109, 115-138.	0.4	4
72	Matching of MHC Class I Chain-Related Genes a and B Is Associated with Reduced Incidence of Severe Acute Graft-Versus-Host Disease after Unrelated Hematopoietic Stem Cell Transplantation. Blood, 2014, 124, 664-664.	0.6	3

#	Article	IF	CITATIONS
73	Identification of Minor Histocompatibility Antigens Based on the 1000 Genomes Project for Application in Therapeutic Dendritic Cell Vaccination. Blood, 2014, 124, 2418-2418.	0.6	Ο
74	Minor H antigen matches and mismatches are equally distributed among recipients with or without complications after <scp>HLA</scp> identical sibling renal transplantation. Tissue Antigens, 2013, 82, 312-316.	1.0	9
75	Multicenter Analyses Demonstrate Significant Clinical Effects of Minor Histocompatibility Antigens on GvHD and GvL after HLA-Matched Related and Unrelated Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2013, 19, 1244-1253.	2.0	93
76	50-OR. Human Immunology, 2013, 74, 39.	1.2	0
77	Treatment of Steroid Resistant Grade II to IV Acute GVHD by Infusion of Mesenchymal Stroma Cells Expanded with Platelet Lysate - a Phase I/II Study. Biology of Blood and Marrow Transplantation, 2013, 19, S144.	2.0	0
78	Predicted indirectly recognizable HLA epitopes presented by HLA-DR correlate with the de novo development of donor-specific HLA IgG antibodies after kidney transplantation. Human Immunology, 2013, 74, 290-296.	1.2	88
79	The novel <i><scp>HLA</scp>â€B*44:02:27</i> allele, identified by sequencingâ€based typing of a candidate stemâ€cell donor. Tissue Antigens, 2013, 81, 230-231.	1.0	4
80	The novelHLA-A*24:215allele, identified by sequencing-based typing of a stem cell transplant patient and the sibling donor. Tissue Antigens, 2013, 82, 138-139.	1.0	3
81	Towards effective and safe immunotherapy after allogeneic stem cell transplantation: identification of hematopoietic-specific minor histocompatibility antigen UTA2-1. Leukemia, 2013, 27, 642-649.	3.3	35
82	Gender influences the birth order effect in HLA-identical stem cell transplantation. Blood, 2013, 121, 4809-4811.	0.6	1
83	Human Leukocyte Antigen DQ2.2 and Celiac Disease. Journal of Pediatric Gastroenterology and Nutrition, 2013, 56, 428-430.	0.9	38
84	Children with celiac disease and high tTGA are genetically and phenotypically different. World Journal of Gastroenterology, 2013, 19, 7114.	1.4	13
85	Sa1325 The Human Leukocyte Antigen DQ 2.2 and Celiac Disease. Gastroenterology, 2012, 142, S-273.	0.6	2
86	In Situ Detection of HY-Specific T Cells in Acute Graft-versus-Host Disease–Affected Male Skin after Sex-Mismatched Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2012, 18, 381-387.	2.0	18
87	Minor Histocompatibility Antigen Typing by DNA Sequencing for Clinical Practice in Hematopoietic Stem-Cell Transplantation. Methods in Molecular Biology, 2012, 882, 509-530.	0.4	4
88	Sa1340 The Human Leukocyte Antigen DQ B1 02 is More Frequent in Patients With Tissue-Transglutaminase Antibody Levels ≥100 U/mL. Gastroenterology, 2012, 142, S-277.	0.6	1
89	Treatment of Steroid Resistant Grade II to IV Acute Gvhd by Infusion of Mesenchymal Stroma Cells Expanded with Human Plasma and Platelet Lysate - a Phase I/II Study. Blood, 2012, 120, 736-736.	0.6	0
90	Exogenous Addition of Minor H Antigen HA-1+ Dendritic Cells to Skin Tissues Ex Vivo Causes Infiltration and Activation of HA-1-Specific Cytotoxic T Cells. Biology of Blood and Marrow Transplantation, 2011, 17, 69-77.	2.0	9

#	Article	IF	CITATIONS
91	Predictive impact of allele-matching and EBMT risk score for outcome after T-cell depleted unrelated donor transplantation in poor-risk acute leukemia and myelodysplasia. Leukemia, 2011, 25, 1548-1554.	3.3	19
92	Gene Therapy with IgG-HY Fusion Proteins to Reduce Male-Specific T-Cell ReactivityIn Vitro. Human Gene Therapy, 2011, 22, 44-54.	1.4	5
93	Identification of New Hematopoietic Minor Histocompatibility Antigen UTA2-1; Ready for Application in Antitumor Immunotherapy. Blood, 2011, 118, 2979-2979.	0.6	0
94	Posters * Early Pregnancy. Human Reproduction, 2010, 25, i161-i170.	0.4	0
95	H-Y antibody titers are increased in unexplained secondary recurrent miscarriage patients and associated with low male : female ratio in subsequent live births. Human Reproduction, 2010, 25, 2745-2752.	0.4	34
96	Association of HY-restricting HLA class II alleles with pregnancy outcome in patients with recurrent miscarriage subsequent to a firstborn boy. Human Molecular Genetics, 2009, 18, 1684-1691.	1.4	65
97	Steric Hindrance and Fast Dissociation Explain the Lack of Immunogenicity of the Minor Histocompatibility HA-1Arg Null Allele. Journal of Immunology, 2009, 182, 4809-4816.	0.4	28
98	Poor-Risk Acute Leukemia Patients with An EBMT Low-Risk Score and An 8/8 Matched Unrelated Donor Show Excellent Survival After Hematopoietic Stem Cell Transplantation Blood, 2009, 114, 1196-1196.	0.6	2
99	Natural T-cell responses against minor histocompatibility antigen (mHag) HY following HLA-matched hematopoietic cell transplantation: what are the requirements for a †good' mHag?. Leukemia, 2008, 22, 1948-1951.	3.3	2
100	Minor histocompatibility antigens: targets for tumour therapy and transplant tolerance. International Journal of Immunogenetics, 2008, 35, 363-366.	0.8	8
101	Phenotype Frequencies of Autosomal Minor Histocompatibility Antigens Display Significant Differences among Populations. PLoS Genetics, 2007, 3, e103.	1.5	68
102	Risk assessment in haematopoietic stem cell transplantation: Minor histocompatibility antigens. Best Practice and Research in Clinical Haematology, 2007, 20, 171-187.	0.7	53
103	Molecular Typing Methods for Minor Histocompatibility Antigens. Methods in Molecular Medicine, 2007, 134, 81-96.	0.8	12
104	Minor Histocompatibility Antigen DDX3Y Induces HLA-DQ5-Restricted T Cell Responses with Limited TCR-Vβ Usage Both In Vivo and In Vitro. Biology of Blood and Marrow Transplantation, 2006, 12, 1114-1124.	2.0	9
105	Matching of the Minor Histocompatibility Antigen HLA-A1/H-Y May Improve Prognosis in Corneal Transplantation. Transplantation, 2006, 82, 1037-1041.	0.5	57
106	A possible role for CCL27/CTACK-CCR10 interaction in recruiting CD4+ T cells to skin in human graft-versus-host disease. British Journal of Haematology, 2006, 133, 538-549.	1.2	42
107	In situ visualization of antigen-specific T cells in cryopreserved human tissues. Journal of Immunological Methods, 2006, 310, 78-85.	0.6	12
108	A Uniform Genomic Minor Histocompatibility Antigen Typing Methodology and Database Designed to Facilitate Clinical Applications. PLoS ONE, 2006, 1, e42.	1.1	65

#	Article	IF	CITATIONS
109	Expanding the immunotherapeutic potential of minor histocompatibility antigens. Journal of Clinical Investigation, 2005, 115, 3397-3400.	3.9	32
110	Minor histocompatibility antigens – big in tumour therapy. Trends in Immunology, 2004, 25, 56-60.	2.9	73
111	Identification of HLA class II-restricted H-Y-specific T-helper epitope evoking CD4+ T-helper cells in H-Y-mismatched transplantation. Lancet, The, 2003, 362, 610-615.	6.3	120
112	The minor histocompatibility antigen HA-3 arises from differential proteasome–mediated cleavage of the lymphoid blast crisis (Lbc) oncoprotein. Blood, 2003, 102, 621-629.	0.6	118
113	The DBY gene codes for an HLA-DQ5–restricted human male-specific minor histocompatibility antigen involved in graft-versus-host disease. Blood, 2002, 99, 3027-3032.	0.6	156
114	<i>Mycobacterium leprae</i> -Specific, HLA Class II-Restricted Killing of Human Schwann Cells by CD4+ Th1 Cells: A Novel Immunopathogenic Mechanism of Nerve Damage in Leprosy. Journal of Immunology, 2001, 166, 5883-5888.	0.4	73
115	Novel mechanisms in the immunopathogenesis of leprosy nerve damage: The role of Schwann cells, T cells and Mycobacterium leprae. Immunology and Cell Biology, 2000, 78, 349-355.	1.0	53
116	ALLORECOGNITION OF ARTIFICIAL NERVE GUIDES FILLED WITH HUMAN SCHWANN CELLS : An In Vitro Pilot Study. Transplantation, 2000, 69, 455.	0.5	1
117	The role of Schwann cells, T cells and Mycobacterium leprae in the immunopathogenesis of nerve damage in leprosy. Leprosy Review, 2000, 71 Suppl, S121-9.	0.1	4
118	Cloning, expression and significance of MPT53 for identification of secreted proteins of Mycobacterium tuberculosis. Microbial Pathogenesis, 1999, 26, 207-219.	1.3	31
119	The mammalian cell entry operon 1 (mce1) of Mycobacterium leprae and Mycobacterium tuberculosis. Microbial Pathogenesis, 1999, 27, 173-177.	1.3	23
120	Antibodies to sulfatide in leprosy and leprosy reactions American Journal of Tropical Medicine and Hygiene, 1999, 61, 495-499.	0.6	2
121	Modulation of Protective and Pathological Immunity in Mycobacterial Infections. International Archives of Allergy and Immunology, 1997, 113, 400-408.	0.9	10
122	Molecular characterization and T-cell-stimulatory capacity of Mycobacterium leprae antigen T5. Infection and Immunity, 1995, 63, 4682-4685.	1.0	4
123	Minor HistocompatibilityAntigens in Biologyand Medicine. , 0, , 544-544.		0