
Xuanyong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2126918/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer. Scientific Reports, 2014, 4, 4359.	3.3	342
2	Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium. Biomaterials, 2014, 35, 7699-7713.	11.4	340
3	Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomaterials, 2004, 25, 1755-1761.	11.4	315
4	Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials, 2011, 32, 693-705.	11.4	307
5	The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration. Biomaterials, 2013, 34, 3184-3195.	11.4	282
6	Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. Biomaterials, 2013, 34, 3467-3478.	11.4	269
7	Surface nano-functionalization of biomaterials. Materials Science and Engineering Reports, 2010, 70, 275-302.	31.8	244
8	Stimulation of bone growth following zinc incorporation into biomaterials. Biomaterials, 2014, 35, 6882-6897.	11.4	241
9	In vivo evaluation of plasma-sprayed wollastonite coating. Biomaterials, 2005, 26, 3455-3460.	11.4	218
10	Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants. Acta Biomaterialia, 2017, 49, 590-603.	8.3	217
11	Apatite formed on the surface of plasma-sprayed wollastonite coating immersed in simulated body fluid. Biomaterials, 2001, 22, 2007-2012.	11.4	215
12	Enhanced osteointegration on tantalum-implanted polyetheretherketone surface with bone-like elastic modulus. Biomaterials, 2015, 51, 173-183.	11.4	206
13	Osteogenic activity and antibacterial effect of zinc ion implanted titanium. Colloids and Surfaces B: Biointerfaces, 2014, 117, 158-165.	5.0	205
14	InÂvitro and inÂvivo anti-biofilm effects of silver nanoparticles immobilized on titanium. Biomaterials, 2014, 35, 9114-9125.	11.4	205
15	Influence of sulfur content on bone formation and antibacterial ability of sulfonated PEEK. Biomaterials, 2016, 83, 115-126.	11.4	189
16	Enhanced Corrosion Resistance and Biocompatibility of Magnesium Alloy by Mg–Al-Layered Double Hydroxide. ACS Applied Materials & Interfaces, 2016, 8, 35033-35044.	8.0	173
17	Surface modification of biodegradable magnesium and its alloys for biomedical applications. International Journal of Energy Production and Management, 2015, 2, 135-151.	3.7	141
18	Enhanced Osseointegration of Hierarchical Micro/Nanotopographic Titanium Fabricated by Microarc Oxidation and Electrochemical Treatment. ACS Applied Materials & Interfaces, 2016, 8, 3840-3852.	8.0	129

#	Article	IF	CITATIONS
19	A strontium-incorporated nanoporous titanium implant surface for rapid osseointegration. Nanoscale, 2016, 8, 5291-5301.	5.6	128
20	Bioactive calcium silicate ceramics and coatings. Biomedicine and Pharmacotherapy, 2008, 62, 526-529.	5.6	127
21	Surface modification of biomaterials using plasma immersion ion implantation and deposition. Interface Focus, 2012, 2, 325-336.	3.0	123
22	Electron storage mediated dark antibacterial action of bound silver nanoparticles: Smaller is not always better. Acta Biomaterialia, 2013, 9, 5100-5110.	8.3	116
23	Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration. Scientific Reports, 2016, 6, 31769.	3.3	112
24	Plasma-treated nanostructured TiO2 surface supporting biomimetic growth of apatite. Biomaterials, 2005, 26, 6143-6150.	11.4	110
25	Effect of Local Alkaline Microenvironment on the Behaviors of Bacteria and Osteogenic Cells. ACS Applied Materials & Interfaces, 2018, 10, 42018-42029.	8.0	110
26	Bioactivity and cytocompatibility of zirconia (ZrO2) films fabricated by cathodic arc deposition. Biomaterials, 2006, 27, 3904-3911.	11.4	106
27	Protection of magnesium alloys: From physical barrier coating to smart self-healing coating. Journal of Alloys and Compounds, 2021, 853, 157010.	5.5	106
28	Plasma sprayed wollastonite/TiO2 composite coatings on titanium alloys. Biomaterials, 2002, 23, 4065-4077.	11.4	104
29	Improvement of surface bioactivity on titanium by water and hydrogen plasma immersion ion implantation. Biomaterials, 2005, 26, 6129-6135.	11.4	102
30	Antibacterial Surface Design of Titanium-Based Biomaterials for Enhanced Bacteria-Killing and Cell-Assisting Functions Against Periprosthetic Joint Infection. ACS Applied Materials & Interfaces, 2016, 8, 11162-11178.	8.0	95
31	Selective responses of human gingival fibroblasts and bacteria on carbon fiber reinforced polyetheretherketone with multilevel nanostructured TiO2. Biomaterials, 2016, 83, 207-218.	11.4	92
32	Calcium Plasma Implanted Titanium Surface with Hierarchical Microstructure for Improving the Bone Formation. ACS Applied Materials & amp; Interfaces, 2015, 7, 13053-13061.	8.0	90
33	Silver-nanoparticles-modified biomaterial surface resistant to staphylococcus: new insight into the antimicrobial action of silver. Scientific Reports, 2016, 6, 32699.	3.3	90
34	Zn/Ag micro-galvanic couples formed on titanium and osseointegration effects in the presence of S.Aaureus. Biomaterials, 2015, 65, 22-31.	11.4	89
35	UV-irradiation-induced bioactivity on TiO2 coatings with nanostructural surface. Acta Biomaterialia, 2008, 4, 544-552.	8.3	88
36	Multifunctional sulfonated polyetheretherketone coating with beta-defensin-14 for yielding durable and broad-spectrum antibacterial activity and ossepting ration. Acta Biomaterialia, 2019, 86, 323-337	8.3	83

#	Article	IF	CITATIONS
37	Multilevel surface engineering of nanostructured TiO2 on carbon-fiber-reinforced polyetheretherketone. Biomaterials, 2014, 35, 5731-5740.	11.4	81
38	Enhanced Bioactivity and Bacteriostasis of Surface Fluorinated Polyetheretherketone. ACS Applied Materials & amp; Interfaces, 2017, 9, 16824-16833.	8.0	79
39	Layer-Number Dependent Antibacterial and Osteogenic Behaviors of Graphene Oxide Electrophoretic Deposited on Titanium. ACS Applied Materials & Interfaces, 2017, 9, 12253-12263.	8.0	78
40	PEO/Mg–Zn–Al LDH Composite Coating on Mg Alloy as a Zn/Mg Ion-Release Platform with Multifunctions: Enhanced Corrosion Resistance, Osteogenic, and Antibacterial Activities. ACS Biomaterials Science and Engineering, 2018, 4, 4112-4121.	5.2	76
41	Antibacterial property, angiogenic and osteogenic activity of Cu-incorporated TiO ₂ coating. Journal of Materials Chemistry B, 2014, 2, 6738-6748.	5.8	75
42	Sealing the Pores of PEO Coating with Mg-Al Layered Double Hydroxide: Enhanced Corrosion Resistance, Cytocompatibility and Drug Delivery Ability. Scientific Reports, 2017, 7, 8167.	3.3	74
43	Plasma-sprayed CaTiSiO ₅ ceramic coating on Ti-6Al-4V with excellent bonding strength, stability and cellular bioactivity. Journal of the Royal Society Interface, 2009, 6, 159-168.	3.4	71
44	Dose-response relationships between copper and its biocompatibility/antibacterial activities. Journal of Trace Elements in Medicine and Biology, 2019, 55, 127-135.	3.0	71
45	Osteogenesis, angiogenesis and immune response of Mg-Al layered double hydroxide coating on pure Mg. Bioactive Materials, 2021, 6, 91-105.	15.6	71
46	Effects of a hybrid micro/nanorod topography-modified titanium implant on adhesion and osteogenic differentiation in rat bone marrow mesenchymal stem cells. International Journal of Nanomedicine, 2013, 8, 257.	6.7	70
47	Balancing the Osteogenic and Antibacterial Properties of Titanium by Codoping of Mg and Ag: An in Vitro and in Vivo Study. ACS Applied Materials & Interfaces, 2015, 7, 17826-17836.	8.0	70
48	Antimicrobial and Osteogenic Properties of Silver-Ion-Implanted Stainless Steel. ACS Applied Materials & Interfaces, 2015, 7, 10785-10794.	8.0	70
49	Butyrate-inserted Ni–Ti layered double hydroxide film for H2O2-mediated tumor and bacteria killing. Materials Today, 2017, 20, 238-257.	14.2	70
50	Regulation of extracellular bioactive cations in bone tissue microenvironment induces favorable osteoimmune conditions to accelerate in situ bone regeneration. Bioactive Materials, 2021, 6, 2315-2330.	15.6	69
51	Immunomodulatory Effects of Calcium and Strontium Co-Doped Titanium Oxides on Osteogenesis. Frontiers in Immunology, 2017, 8, 1196.	4.8	67
52	A Novel Stimuliâ€Responsive Injectable Antibacterial Hydrogel to Achieve Synergetic Photothermal/Geneâ€Targeted Therapy towards Uveal Melanoma. Advanced Science, 2021, 8, e2004721.	11.2	67
53	Antimicrobial activity and cytocompatibility of Ag plasma-modified hierarchical TiO2 film on titanium surface. Colloids and Surfaces B: Biointerfaces, 2014, 113, 134-145.	5.0	66
54	Antimicrobial and osteogenic effect of Ag-implanted titanium with a nanostructured surface. International Journal of Nanomedicine, 2012, 7, 875.	6.7	65

#	Article	IF	CITATIONS
55	Layered double hydroxide/poly-dopamine composite coating with surface heparinization on Mg alloys: improved anticorrosion, endothelialization and hemocompatibility. Biomaterials Science, 2018, 6, 1846-1858.	5.4	65
56	Biofunctionalization of a titanium surface with a nano-sawtooth structure regulates the behavior of rat bone marrow mesenchymal stem cells. International Journal of Nanomedicine, 2012, 7, 4459.	6.7	64
57	Plasmonic gold nanoparticles modified titania nanotubes for antibacterial application. Applied Physics Letters, 2014, 104, .	3.3	64
58	Enhanced osteoblast responses to poly ether ether ketone surface modified by water plasma immersion ion implantation. Colloids and Surfaces B: Biointerfaces, 2014, 117, 89-97.	5.0	64
59	Oxidative stress-mediated selective antimicrobial ability of nano-VO ₂ against Gram-positive bacteria for environmental and biomedical applications. Nanoscale, 2016, 8, 11907-11923.	5.6	64
60	Recent progress in superhydrophobic coating on Mg alloys: A general review. Journal of Magnesium and Alloys, 2021, 9, 1471-1486.	11.9	64
61	Morphology of apatite formed on surface of wollastonite coating soaked in simulate body fluid. Materials Letters, 2002, 57, 652-655.	2.6	60
62	Hemocompatibility and selective cell fate of polydopamine-assisted heparinized PEO/PLLA composite coating on biodegradable AZ31 alloy. Colloids and Surfaces B: Biointerfaces, 2014, 121, 451-460.	5.0	60
63	Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration. Biomaterials, 2021, 276, 121038.	11.4	60
64	Hierarchical micro/nanostructured titanium with balanced actions to bacterial and mammalian cells for dental implants. International Journal of Nanomedicine, 2015, 10, 6659.	6.7	59
65	M2 macrophages contribute to osteogenesis and angiogenesis on nanotubular TiO ₂ surfaces. Journal of Materials Chemistry B, 2017, 5, 3364-3376.	5.8	59
66	Osteogenesis Catalyzed by Titanium-Supported Silver Nanoparticles. ACS Applied Materials & Interfaces, 2017, 9, 5149-5157.	8.0	57
67	Plasma surface modification of titanium for hard tissue replacements. Surface and Coatings Technology, 2004, 186, 227-233.	4.8	54
68	Antibacterial activity and cytocompatibility of titanium oxide coating modified by iron ion implantation. Acta Biomaterialia, 2014, 10, 4505-4517.	8.3	53
69	CVD Growth of Graphene on NiTi Alloy for Enhanced Biological Activity. ACS Applied Materials & Interfaces, 2015, 7, 19876-19881.	8.0	53
70	Multifunctional Mn-containing titania coatings with enhanced corrosion resistance, osteogenesis and antibacterial activity. Journal of Materials Chemistry B, 2014, 2, 5397.	5.8	51
71	How Oxygen ontaining Groups on Graphene Influence the Antibacterial Behaviors. Advanced Materials Interfaces, 2017, 4, 1700228.	3.7	51
72	Bifunctional galvanics mediated selective toxicity on titanium. Materials Horizons, 2018, 5, 264-267.	12.2	51

#	Article	IF	CITATIONS
73	<i>In vitro</i> degradation, hemolysis, and cytocompatibility of PEO/PLLA composite coating on biodegradable AZ31 alloy. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 342-354.	3.4	50
74	Enhanced apatite-forming ability and cytocompatibility of porous and nanostructured TiO2/CaSiO3 coating on titanium. Colloids and Surfaces B: Biointerfaces, 2013, 101, 83-90.	5.0	49
75	Selective Tumor Cell Inhibition Effect of Ni–Ti Layered Double Hydroxides Thin Films Driven by the Reversed pH Gradients of Tumor Cells. ACS Applied Materials & Interfaces, 2015, 7, 7843-7854.	8.0	49
76	Silicon-Doped Titanium Dioxide Nanotubes Promoted Bone Formation on Titanium Implants. International Journal of Molecular Sciences, 2016, 17, 292.	4.1	49
77	Combination types between graphene oxide and substrate affect the antibacterial activity. Bioactive Materials, 2018, 3, 341-346.	15.6	49
78	Nanostructural Surfaces with Different Elastic Moduli Regulate the Immune Response by Stretching Macrophages. Nano Letters, 2019, 19, 3480-3489.	9.1	49
79	Proliferation and gene expression of osteoblasts cultured in DMEM containing the ionic products of dicalcium silicate coating. Biomedicine and Pharmacotherapy, 2009, 63, 650-657.	5.6	47
80	Tantalum implanted entangled porous titanium promotes surface osseointegration and bone ingrowth. Scientific Reports, 2016, 6, 26248.	3.3	47
81	Mn-containing titanium surface with favorable osteogenic and antimicrobial functions synthesized by PIII&D. Colloids and Surfaces B: Biointerfaces, 2017, 152, 376-384.	5.0	47
82	Minocycline hydrochloride loaded on titanium by graphene oxide: an excellent antibacterial platform with the synergistic effect of contact-killing and release-killing. Biomaterials Science, 2018, 6, 304-313.	5.4	47
83	Controllable and durable release of BMP-2-loaded 3D porous sulfonated polyetheretherketone (PEEK) for osteogenic activity enhancement. Colloids and Surfaces B: Biointerfaces, 2018, 171, 668-674.	5.0	47
84	Acid-induced bioactive titania surface. Journal of Biomedical Materials Research - Part A, 2005, 75A, 888-894.	4.0	46
85	In vitro degradation behavior and cytocompatibility of biodegradable AZ31 alloy with PEO/HT composite coating. Colloids and Surfaces B: Biointerfaces, 2015, 128, 44-54.	5.0	46
86	Cytocompatibility and antibacterial activity of titania nanotubes incorporated with gold nanoparticles. Colloids and Surfaces B: Biointerfaces, 2016, 145, 597-606.	5.0	45
87	Characterization of plasma sprayed wollastonite powder and coatings. Surface and Coatings Technology, 2002, 153, 173-177.	4.8	44
88	Enhanced bioactivity and bacteriostasis effect of TiO2 nanofilms with favorable biomimetic architectures on titanium surface. RSC Advances, 2013, 3, 11214.	3.6	44
89	Alkali-treated titanium selectively regulating biological behaviors of bacteria, cancer cells and mesenchymal stem cells. Journal of Colloid and Interface Science, 2014, 436, 160-170.	9.4	44
90	Antibacterial ability and hemocompatibility of graphene functionalized germanium. Scientific Reports, 2016, 6, 37474.	3.3	44

#	Article	IF	CITATIONS
91	Enhanced physicochemical and biological properties of C/Cu dual ions implanted medical titanium. Bioactive Materials, 2020, 5, 377-386.	15.6	44
92	Regulating the local pH level of titanium <i>via</i> Mg–Fe layered double hydroxides films for enhanced osteogenesis. Biomaterials Science, 2018, 6, 1227-1237.	5.4	43
93	A facile and universal strategy to endow implant materials with antibacterial ability <i>via</i> alkalinity disturbing bacterial respiration. Biomaterials Science, 2020, 8, 1815-1829.	5.4	43
94	Activating titanium oxide coatings for orthopedic implants. Surface and Coatings Technology, 2013, 233, 57-64.	4.8	42
95	Dual ions implantation of zirconium and nitrogen into magnesium alloys for enhanced corrosion resistance, antimicrobial activity and biocompatibility. Colloids and Surfaces B: Biointerfaces, 2016, 148, 200-210.	5.0	42
96	Peroxidase-Like Activity of Ethylene Diamine Tetraacetic Acid and Its Application for Ultrasensitive Detection of Tumor Biomarkers and Circular Tumor Cells. Analytical Chemistry, 2017, 89, 666-672.	6.5	42
97	Biomimetic growth of apatite on hydrogen-implanted silicon. Biomaterials, 2004, 25, 5575-5581.	11.4	41
98	In Vitro and in Vivo Evaluation of Silicate-Coated Polyetheretherketone Fabricated by Electron Beam Evaporation. ACS Applied Materials & Interfaces, 2016, 8, 13197-13206.	8.0	40
99	Black Mn-containing layered double hydroxide coated magnesium alloy for osteosarcoma therapy, bacteria killing, and bone regeneration. Bioactive Materials, 2022, 17, 394-405.	15.6	40
100	Enhanced osteogenic activity of poly ether ether ketone using calcium plasma immersion ion implantation. Colloids and Surfaces B: Biointerfaces, 2016, 142, 192-198.	5.0	39
101	Assembled gold nanorods for the photothermal killing of bacteria. Colloids and Surfaces B: Biointerfaces, 2019, 173, 833-841.	5.0	39
102	Vacuum extraction enhances rhPDGF-BB immobilization on nanotubes to improve implant osseointegration in ovariectomized rats. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1809-1818.	3.3	38
103	A surface-engineered multifunctional TiO2 based nano-layer simultaneously elevates the corrosion resistance, osteoconductivity and antimicrobial property of a magnesium alloy. Acta Biomaterialia, 2019, 99, 495-513.	8.3	38
104	Chemically regulated bioactive ion delivery platform on a titanium surface for sustained controlled release. Journal of Materials Chemistry B, 2014, 2, 283-294.	5.8	37
105	Synergistic effects of immunoregulation and osteoinduction of ds-block elements on titanium surface. Bioactive Materials, 2021, 6, 191-207.	15.6	37
106	In vitro bioactivity and phase stability of plasma-sprayed nanostructured 3Y-TZP coatings. Acta Biomaterialia, 2009, 5, 2270-2278.	8.3	36
107	Microstructure and properties of Ag/N dual ions implanted titanium. Surface and Coatings Technology, 2011, 205, 5430-5436.	4.8	36
108	Ag-plasma modification enhances bone apposition around titanium dental implants: an animal study in Labrador dogs. International Journal of Nanomedicine, 2015, 10, 653.	6.7	36

#	Article	IF	CITATIONS
109	Plasmaâ€6prayed Ceramic Coatings for Osseointegration. International Journal of Applied Ceramic Technology, 2013, 10, 1-10.	2.1	35
110	The prospect of layered double hydroxide as bone implants: A study of mechanical properties, cytocompatibility and antibacterial activity. Applied Clay Science, 2018, 165, 179-187.	5.2	35
111	Co-implantation of magnesium and zinc ions into titanium regulates the behaviors of human gingival fibroblasts. Bioactive Materials, 2021, 6, 64-74.	15.6	35
112	NIRâ€Triggered Crystal Phase Transformation of NiTi‣ayered Double Hydroxides Films for Localized Chemothermal Tumor Therapy. Advanced Science, 2018, 5, 1700782.	11.2	34
113	Reactivity of plasma-sprayed wollastonite coating in simulated body fluid. Journal of Biomedical Materials Research Part B, 2002, 59, 259-264.	3.1	33
114	Plasma-sprayed wollastonite 2M/ZrO2 composite coating. Surface and Coatings Technology, 2003, 172, 270-278.	4.8	33
115	Smart release of doxorubicin loaded on polyetheretherketone (PEEK) surface with 3D porous structure. Colloids and Surfaces B: Biointerfaces, 2018, 163, 175-183.	5.0	33
116	Sodium butyrate-modified sulfonated polyetheretherketone modulates macrophage behavior and shows enhanced antibacterial and osteogenic functions during implant-associated infections. Journal of Materials Chemistry B, 2019, 7, 5541-5553.	5.8	33
117	In-situ growth of layered double hydroxide films on biomedical magnesium alloy by transforming metal oxyhydroxide. Applied Surface Science, 2019, 496, 143690.	6.1	33
118	Molybdenum disulfide (MoS2) nanosheets vertically coated on titanium for disinfection in the dark. Arabian Journal of Chemistry, 2020, 13, 1612-1623.	4.9	33
119	Light-induced bioactive TiO2 surface. Applied Physics Letters, 2006, 88, 013905.	3.3	32
120	Antibacterial activity, osteogenic and angiogenic behaviors of copper-bearing titanium synthesized by PIII&D. Journal of Materials Chemistry B, 2016, 4, 1296-1309.	5.8	32
121	Antibacterial activity of an NIR-induced Zn ion release film. Journal of Materials Chemistry B, 2020, 8, 406-415.	5.8	32
122	β-CD/PEI/PVA composite hydrogels with superior self-healing ability and antibacterial activity for wound healing. Composites Part B: Engineering, 2022, 238, 109921.	12.0	32
123	Dissolution and mineralization of plasma-sprayed wollastonite coatings with different crystallinity. Surface and Coatings Technology, 2005, 200, 2420-2427.	4.8	31
124	Strontium delivery on topographical titanium to enhance bioactivity and osseointegration in osteoporotic rats. Journal of Materials Chemistry B, 2015, 3, 4790-4804.	5.8	31
125	Three-dimensional porous graphene nanosheets synthesized on the titanium surface for osteogenic differentiation of rat bone mesenchymal stem cells. Carbon, 2017, 125, 227-235.	10.3	31
126	Multi-scale hybrid modified coatings on titanium implants for non-cytotoxicity and antibacterial properties. Nanoscale, 2021, 13, 10587-10599.	5.6	30

#	Article	IF	CITATIONS
127	Nucleation and growth of calcium–phosphate on Ca-implanted titanium surface. Surface Science, 2006, 600, 651-656.	1.9	29
128	Enhanced corrosion resistance and biocompatibility of magnesium alloy by hydroxyapatite/graphene oxide bilayer coating. Materials Letters, 2020, 264, 127322.	2.6	29
129	Mg-Fe LDH sealed PEO coating on magnesium for biodegradation control, antibacteria and osteogenesis. Journal of Materials Science and Technology, 2022, 105, 57-67.	10.7	29
130	Tuning the surface potential to reprogram immune microenvironment for bone regeneration. Biomaterials, 2022, 282, 121408.	11.4	29
131	Early apatite deposition and osteoblast growth on plasma-sprayed dicalcium silicate coating. Journal of Biomedical Materials Research - Part A, 2005, 74A, 356-365.	4.0	28
132	Antibacterial ability, cytocompatibility and hemocompatibility of fluorinated graphene. Colloids and Surfaces B: Biointerfaces, 2019, 173, 681-688.	5.0	27
133	Self-assembled ferric oxyhydroxide nanosheet on PEO-coated magnesium alloy with photocatalytic/photothermal antibacterial and enhanced osteogenesis activities. Chemical Engineering Journal, 2022, 437, 135257.	12.7	27
134	Spacing-Dependent Antimicrobial Efficacy of Immobilized Silver Nanoparticles. Journal of Physical Chemistry Letters, 2014, 5, 743-748.	4.6	26
135	Regulating corrosion reactions to enhance the anti-corrosion and self-healing abilities of PEO coating on magnesium. Corrosion Science, 2021, 192, 109840.	6.6	26
136	Mechanical Force Induced Selfâ€Assembly of Chinese Herbal Hydrogel with Synergistic Effects of Antibacterial Activity and Immune Regulation for Wound Healing. Small, 2022, 18, e2201766.	10.0	26
137	Bioconductivity and mechanical properties of plasma-sprayed dicalcium silicate/zirconia composite coating. Materials Science and Engineering C, 2005, 25, 509-515.	7.3	25
138	Existence, release, and antibacterial actions of silver nanoparticles on Ag–PIII TiO2 films with different nanotopographies. International Journal of Nanomedicine, 2014, 9, 3389.	6.7	25
139	Graphene oxide as a dual Zn/Mg ion carrier and release platform: enhanced osteogenic activity and antibacterial properties. Journal of Materials Chemistry B, 2018, 6, 2004-2012.	5.8	25
140	"Petal effect―inspired superhydrophobic and highly adhesive coating on magnesium with enhanced corrosion resistance and biocompatibility. Science China Materials, 2018, 61, 629-642.	6.3	25
141	Corrosion Behavior and Biocompatibility of Diamond-like Carbon-Coated Zinc: An In Vitro Study. ACS Omega, 2021, 6, 9843-9851.	3.5	25
142	Achieving stem cell imaging and osteogenic differentiation by using nitrogen doped graphene quantum dots. Journal of Materials Science: Materials in Medicine, 2018, 29, 85.	3.6	24
143	Self-adjusting antibacterial properties of Ag-incorporated nanotubes on micro-nanostructured Ti surfaces. Biomaterials Science, 2019, 7, 4075-4087.	5.4	24
144	ZnO@ZnS nanorod-array coated titanium: Good to fibroblasts but bad to bacteria. Journal of Colloid and Interface Science, 2020, 579, 50-60.	9.4	24

#	Article	IF	CITATIONS
145	Improved in vitro angiogenic behavior of human umbilical vein endothelial cells with oxidized polydopamine coating. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111176.	5.0	23
146	Selective biofunctional modification of titanium implants for osteogenic and antibacterial applications. Journal of Materials Chemistry B, 2014, 2, 7475-7487.	5.8	22
147	Poly(styrenesulfonate)-Modified Ni–Ti Layered Double Hydroxide Film: A Smart Drug-Eluting Platform. ACS Applied Materials & Interfaces, 2016, 8, 24491-24501.	8.0	22
148	Nano Textured PEEK Surface for Enhanced Osseointegration. ACS Biomaterials Science and Engineering, 2019, 5, 1279-1289.	5.2	22
149	Enhanced tendon to bone healing in rotator cuff tear by PLLA/CPS composite films prepared by a simple melt-pressing method: An in vitro and in vivo study. Composites Part B: Engineering, 2019, 165, 526-536.	12.0	22
150	A tailored positively-charged hydrophobic surface reduces the risk of implant associated infections. Acta Biomaterialia, 2020, 114, 421-430.	8.3	22
151	Enhanced osteogenic and selective antibacterial activities on micro-/nano-structured carbon fiber reinforced polyetheretherketone. Journal of Materials Chemistry B, 2016, 4, 2944-2953.	5.8	21
152	Synergistic Effects of N/Cu Dual Ions Implantation on Stimulating Antibacterial Ability and Angiogenic Activity of Titanium. ACS Biomaterials Science and Engineering, 2018, 4, 3185-3193.	5.2	21
153	Pravastatin regulates host foreign-body reaction to polyetheretherketone implants via miR-29ab1-mediated SLIT3 upregulation. Biomaterials, 2019, 203, 12-22.	11.4	21
154	Minocycline hydrochlorideâ€loaded graphene oxide films on implant abutments for periâ€implantitis treatment in beagle dogs. Journal of Periodontology, 2020, 91, 792-799.	3.4	21
155	A lithium-doped surface inspires immunomodulatory functions for enhanced osteointegration through PI3K/AKT signaling axis regulation. Biomaterials Science, 2021, 9, 8202-8220.	5.4	21
156	Bioactivity and cytocompatibility of plasma-sprayed titania coating treated by sulfuric acid treatment. Surface and Coatings Technology, 2008, 202, 3221-3226.	4.8	20
157	rBMSC and bacterial responses to isoelastic carbon fiber-reinforced poly(ether-ether-ketone) modified by zirconium implantation. Journal of Materials Chemistry B, 2016, 4, 96-104.	5.8	20
158	Si-doped porous TiO2 coatings enhanced in vitro angiogenic behavior of human umbilical vein endothelial cells. Colloids and Surfaces B: Biointerfaces, 2017, 159, 493-500.	5.0	20
159	Bioconductivity of plasma sprayed dicalcium silicate/titanium composite coatings on Ti–6Al–4V alloy. Surface and Coatings Technology, 2005, 199, 105-111.	4.8	19
160	Antimicrobial activity of tantalum oxide coatings decorated with Ag nanoparticles. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	2.1	19
161	Band Gap Engineering of Titania Film through Cobalt Regulation for Oxidative Damage of Bacterial Respiration and Viability. ACS Applied Materials & Interfaces, 2017, 9, 27475-27490.	8.0	19
162	Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus. Scientific Reports, 2016, 6, 21761.	3.3	18

#	Article	IF	CITATIONS
163	Surface alloyed Ti–Zr layer constructed on titanium by Zr ion implantation for improving physicochemical and osteogenic properties. Progress in Natural Science: Materials International, 2020, 30, 635-641.	4.4	18
164	Biomedical Implants with Chargeâ€Transfer Monitoring and Regulating Abilities. Advanced Science, 2021, 8, e2004393.	11.2	18
165	Bioactive titanium-particle-containing dicalcium silicate coating. Surface and Coatings Technology, 2005, 200, 1950-1953.	4.8	17
166	Corrosion Motivated ROS Generation Helps Endow Titanium with Broadâ€Spectrum Antibacterial Abilities. Advanced Materials Interfaces, 2019, 6, 1900514.	3.7	17
167	Tailoring time-varying alkaline microenvironment on titanium for sequential anti-infection and osseointegration. Chemical Engineering Journal, 2022, 431, 133940.	12.7	17
168	Micro- and Nanohemispherical 3D Imprints Modulate the Osteogenic Differentiation and Mineralization Tendency of Bone Cells. ACS Applied Materials & Interfaces, 2019, 11, 35513-35524.	8.0	16
169	Regulation of Ce (â¢) / Ce (â£) ratio of cerium oxide for antibacterial application. IScience, 2021, 24, 102226.	4.1	16
170	In-situ growth of vertical graphene on titanium by PECVD for rapid sterilization under near-infrared light. Carbon, 2022, 192, 209-218.	10.3	16
171	Hydrogen plasma surface activation of silicon for biomedical applications. New Biotechnology, 2007, 24, 113-117.	2.7	15
172	Cellular responses to titanium successively treated by magnesium and silver PIII&D. Surface and Coatings Technology, 2014, 256, 9-14.	4.8	15
173	Graphene film-functionalized germanium as a chemically stable, electrically conductive, and biologically active substrate. Journal of Materials Chemistry B, 2015, 3, 1544-1555.	5.8	15
174	Biocompatibility and bone regeneration of PEO/Mg-Al LDH-coated pure Mg: an in vitro and in vivo study. Science China Materials, 2021, 64, 460-473.	6.3	15
175	Proliferation and differentiation of osteoblastic cells on silicon-doped TiO2 film deposited by cathodic arc. Biomedicine and Pharmacotherapy, 2012, 66, 633-641.	5.6	14
176	Synergistic effects of titania nanotubes and silicon to enhance the osteogenic activity. Colloids and Surfaces B: Biointerfaces, 2018, 171, 419-426.	5.0	14
177	Strontium ranelate incorporated 3D porous sulfonated PEEK simulating MC3T3-E1 cell differentiation. International Journal of Energy Production and Management, 2021, 8, rbaa043.	3.7	14
178	Hydroxyapatite composited PEEK with 3D porous surface enhances osteoblast differentiation through mediating NO by macrophage. International Journal of Energy Production and Management, 2022, 9, rbab076.	3.7	14
179	Why does nitrogen-doped graphene oxide lose the antibacterial activity?. Journal of Materials Science and Technology, 2021, 62, 44-51.	10.7	12
180	Integration of a Metal–Organic Framework Film with a Tubular Whispering-Gallery-Mode Microcavity for Effective CO ₂ Sensing. ACS Applied Materials & Interfaces, 2021, 13, 58104-58113.	8.0	12

#	Article	IF	CITATIONS
181	Constructing fluorine-doped Zr-MOF films on titanium for antibacteria, anti-inflammation, and osteogenesis. Materials Science and Engineering C, 2022, 134, 112699.	7.3	12
182	Preparation of PEG/ZIF-8@HF drug delivery system for melanoma treatment via oral administration. Drug Delivery, 2022, 29, 1075-1085.	5.7	12
183	Gold/SH-functionalized nanographene oxide/polyamidamine/poly(ethylene glycol) nanocomposites for enhanced non-enzymatic hydrogen peroxide detection. Biomaterials Science, 2020, 8, 6037-6044.	5.4	11
184	An <i>in vitro</i> and <i>in vivo</i> comparison of Mg(OH) ₂ -, MgF ₂ - and HA-coated Mg in degradation and osteointegration. Biomaterials Science, 2020, 8, 3320-3333.	5.4	11
185	Vacuum-plasma-sprayed silicon coatings for biomedical application. Materials Science and Engineering C, 2008, 28, 1132-1137.	7.3	10
186	Schottky barrier dependent antimicrobial efficacy of silver nanoparticles. Materials Letters, 2016, 179, 1-4.	2.6	10
187	Minocycline hydrochloride loaded graphene oxide enables enhanced osteogenic activity in the presence of Gram-positive bacteria, <i>Staphylococcus aureus</i> . Journal of Materials Chemistry B, 2019, 7, 3590-3598.	5.8	10
188	Au@Ag@Pt core–shell nanorods regulating Ag release behavior endow titanium antibacterial activity and biocompatibility. Rare Metals, 2022, 41, 630-638.	7.1	10
189	Antimicrobial and osteogenic properties of iron-doped titanium. RSC Advances, 2016, 6, 46495-46507.	3.6	9
190	Enhanced osteogenic activity and bacteriostatic effect of TiO2 coatings via hydrogen ion implantation. Materials Letters, 2019, 253, 95-98.	2.6	9
191	Antibacterial Property and Biocompatibility of Polypyrrole Films Treated by Oxygen Plasma Immersion Ion Implantation. Advanced Materials Interfaces, 2020, 7, 2000057.	3.7	9
192	Cytocompatibility of Si-incorporated TiO2 nanopores films. Colloids and Surfaces B: Biointerfaces, 2015, 133, 214-220.	5.0	8
193	Regulating the Behavior of Human Gingival Fibroblasts by sp ² Domains in Reduced Graphene Oxide. ACS Biomaterials Science and Engineering, 2019, 5, 6414-6424.	5.2	8
194	Thermo-sensitive hydrogel on anodized titanium surface to regulate immune response. Surface and Coatings Technology, 2021, 405, 126624.	4.8	8
195	Fe N C single atom nanozymes with dual enzyme-mimicking activities for colorimetric detection of hydrogen peroxide and glutathione. Journal of Materiomics, 2022, 8, 1251-1259.	5.7	8
196	Comparison study of Mg(OH)2, Mg-Fe LDH, and FeOOH coatings on PEO-treated Mg alloy in anticorrosion and biocompatibility. Applied Clay Science, 2022, 225, 106535.	5.2	8
197	Catalyst-enhanced micro-galvanic effect of Cu3N/Cu-bearing NiTi alloy surface for selective bacteria killing. Chemical Engineering Journal, 2022, 447, 137484.	12.7	8
198	Nanoporous SiO2/TiO2 composite coating for orthopedic application. Materials Letters, 2015, 152, 53-56.	2.6	7

#	Article	IF	CITATIONS
199	A tightly bonded reduced graphene oxide coating on magnesium alloy with photothermal effect for tumor therapy. Journal of Magnesium and Alloys, 2022, 10, 3031-3040.	11.9	7
200	Influence of implantation voltage on the biological properties of zinc-implanted titanium. Surface and Coatings Technology, 2017, 312, 75-80.	4.8	6
201	Mechanism of apatite formation on silicon suboxide film prepared by pulsed metal vacuum arc deposition. Materials Chemistry and Physics, 2008, 109, 342-346.	4.0	5
202	Enhanced antioxidant capability and osteogenic property of medical titanium by cerium plasma immersion ion implantation. Surfaces and Interfaces, 2021, 26, 101402.	3.0	5
203	Hydrogen plasma treated-Ce-BTC nanorods enable enhanced antibacterial activity and soft tissue sealing ability. Chemical Engineering Journal, 2022, 449, 137881.	12.7	5
204	Simvastatin-loaded sulfonated PEEK enhances angiogenesis and osteogenesis via miR-29cb2-mediated HIF-31± downregulation. Chemical Engineering Journal, 2022, 448, 137738.	12.7	4
205	Durability of Titanium/Dicalcium Silicate Composite Coatings in Simulated Body Fluid. Journal of Thermal Spray Technology, 2007, 16, 588-592.	3.1	2
206	Nanoporous SiO 2 /TiO 2 coating with enhanced interfacial compatibility for orthopedic applications. Applied Surface Science, 2015, 355, 999-1006.	6.1	2
207	Cell-selective titanium oxide coatings mediated by coupling hafnium-doping and UV pre-illumination. Arabian Journal of Chemistry, 2020, 13, 4210-4217.	4.9	2
208	Interface effects on regulating the behaviors of human gingival fibroblasts on titanium by Zn-PIII. Surface and Coatings Technology, 2020, 403, 126357.	4.8	2
209	Micro-galvanic effects of silver-containing titanium implants regulate the immune responses via activating voltage-gated calcium channels in macrophages. Chemical Engineering Journal, 2022, 428, 131068.	12.7	2
210	Restoring the osteogenic activity of bacterial debris contaminated titanium by doping with magnesium. RSC Advances, 2016, 6, 113395-113404.	3.6	1
211	Responses of rat bone marrow mesenchymal stem cells to graphene oxide films with different alkali treatment. Journal of Materials Research and Technology, 2019, 8, 5344-5347.	5.8	1
212	Nanostructured Biomaterials for Tissue Repair and Anti-Infection. Nanomaterials, 2022, 12, 1573.	4.1	1
213	A superlattice composite of Zn–Fe layered double hydroxide and graphene oxide for antitumor application. Journal of Materials Chemistry B, 2022, 10, 5556-5560.	5.8	1
214	Effects of plasma surface modification on bioactivity of titanium in bone replacements. , 0, , .		0