
Sergey I Omelkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2126621/publications.pdf Version: 2024-02-01

SEDCEV LOMELKOV

#	Article	IF	CITATIONS
1	On the use of CdSe scintillating nanoplatelets as time taggers for high-energy gamma detection. Npj 2D Materials and Applications, 2019, 3, .	7.9	53
2	New features of hot intraband luminescence for fast timing. Journal of Luminescence, 2016, 176, 309-317.	3.1	51
3	Progress in development of a new luminescence setup at the FinEstBeAMS beamline of the MAX IV laboratory. Radiation Measurements, 2019, 121, 91-98.	1.4	39
4	Luminescence VUV spectroscopy of cerium-and europium-doped lithium borate crystals. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2007, 102, 60-67.	0.6	35
5	Scintillation yield of hot intraband luminescence. Journal of Luminescence, 2018, 198, 260-271.	3.1	31
6	Light yield of scintillating nanocrystals under X-ray and electron excitation. Journal of Luminescence, 2019, 215, 116613.	3.1	29
7	Energy transfer in solid solutions ZnxMg1â^'xWO4. Optical Materials, 2014, 36, 1660-1664.	3.6	28
8	Vacuum ultraviolet silicon photomultipliers applied to BaF ₂ cross-luminescence detection for high-rate ultrafast timing applications. Physics in Medicine and Biology, 2021, 66, 114002.	3.0	28
9	Luminescent, optical and electronic properties of Na2Mo2O7 single crystals. Journal of Luminescence, 2017, 192, 1264-1272.	3.1	23
10	Intraband luminescence excited in new ways: Low-power x-ray and electron beams. Journal of Luminescence, 2017, 191, 61-67.	3.1	18
11	Fast ultradense GdTa1-xNbxO4 scintillator crystals. Optical Materials, 2017, 66, 332-337.	3.6	17
12	Core–shell ZnO:Ga-SiO ₂ nanocrystals: limiting particle agglomeration and increasing luminescence <i>via</i> surface defect passivation. RSC Advances, 2019, 9, 28946-28952.	3.6	15
13	Influence of the Sc cation substituent on the structural properties and energy transfer processes in GAGG:Ce crystals. CrystEngComm, 2020, 22, 2621-2631.	2.6	15
14	Ultrafast hybrid nanocomposite scintillators: A review. Journal of Luminescence, 2022, 242, 118534.	3.1	15
15	A luminescence spectroscopy and theoretical study of 4f–5d transitions of Ce ^{3 +} ions in SrAlF ₅ crystals. Journal of Physics Condensed Matter, 2011, 23, 105501.	1.8	14
16	Diamond composite with embedded YAG:Ce nanoparticles as a source of fast X-ray luminescence in the visible and near-IR range. Carbon, 2021, 174, 52-58.	10.3	14
17	Luminescence study of alumina nanopowders prepared by various methods. Radiation Measurements, 2016, 90, 75-79.	1.4	12
18	The luminescence microspectroscopy of Pr3+-doped LiBaAlF6 and Ba3Al2F12 crystals. Radiation Measurements, 2013, 56, 49-53.	1.4	11

SERGEY I OMELKOV

#	Article	IF	CITATIONS
19	Testing performance of Pr3+-doped KLuP2O7 upon UV-, synchrotron X-ray and cathode-ray excitation. Optical Materials, 2020, 108, 110234.	3.6	9
20	Phase transition, radio- and photoluminescence of K3Lu(PO4)2 doped with Pr3+ ions. Journal of Luminescence, 2021, 230, 117749.	3.1	9
21	A far ultraviolet spectroscopic study of the reflectance, luminescence and electronic properties of SrMgF4 single crystals. Journal of Luminescence, 2014, 145, 872-879.	3.1	8
22	Optical and luminescence spectroscopy studies of electronic structure of Li6GdB3O9 single crystals. Optical Materials, 2014, 36, 1060-1064.	3.6	8
23	Time-resolved luminescence spectroscopy of structurally disordered K3WO3F3 crystals. Optical Materials, 2016, 58, 285-289.	3.6	8
24	Action Recognition Using Single-Pixel Time-of-Flight Detection. Entropy, 2019, 21, 414.	2.2	8
25	Decay Kinetics of CeF3 under VUV and X-ray Synchrotron Radiation. Symmetry, 2020, 12, 914.	2.2	8
26	Luminescence properties of undoped LiBaAlF ₆ single crystals. Journal of Physics Condensed Matter, 2010, 22, 295504.	1.8	7
27	Electronic properties of undoped LiBaAlF_6 single crystals: far-ultraviolet optical, luminescence, and x-ray photoelectron spectroscopy studies. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1926.	2.1	7
28	Energy transfer to luminescent impurity by thermally quenching excitons in CdWO4:Sm. Journal of Luminescence, 2020, 228, 117609.	3.1	7
29	Ultrafast Zn(Cd,Mg)O:Ga nanoscintillators with luminescence tunable by band gap modulation. Optics Express, 2018, 26, 29482.	3.4	7
30	Excitons and energy transport in crystals KPb2Cl5 and RbPb2Br5. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 543, 216-220.	1.6	6
31	Crystal growth and luminescent properties of LiNa5Mo9O30. Journal of Crystal Growth, 2019, 519, 35-40.	1.5	6
32	Optical and luminescence characterization of LiBaAlF6 single crystals. Optical Materials, 2015, 39, 52-57.	3.6	5
33	Ultrafast Radiative Relaxation Processes in Multication Cross-Luminescence Materials. IEEE Transactions on Nuclear Science, 2020, 67, 1009-1013.	2.0	5
34	Relaxation of electronic excitations in K2GeF6 studied by means of time-resolved luminescence spectroscopy under VUV and pulsed electron beam excitation. Journal of Alloys and Compounds, 2021, 883, 160916.	5.5	5
35	Energy transfer in pure and rare-earth doped SrAlF5crystals. IOP Conference Series: Materials Science and Engineering, 2010, 15, 012011.	0.6	4
36	Electronic excitations and luminescence of SrMgF4 single crystals. Physics of the Solid State, 2014, 56, 456-467.	0.6	4

SERGEY I OMELKOV

#	Article	IF	CITATIONS
37	Photoluminescence of monoclinic Li3AlF6 crystals under vacuum ultraviolet and soft X-ray excitations. Optical Materials, 2015, 49, 201-207.	3.6	4
38	Effect of an electron beam irradiation on optical and luminescence properties of LiBaAlF 6 single crystals. Optical Materials, 2017, 69, 344-351.	3.6	4
39	Time-resolved luminescence spectroscopy of pure and doped with Ce3+ ions SrAlF5 crystals. Journal of Surface Investigation, 2010, 4, 666-670.	0.5	3
40	Electronic excitations and luminescence of SrAlF5 crystals doped with Ce3+ ions. Radiation Measurements, 2010, 45, 292-294.	1.4	3
41	Study of the optical absorption and photoluminescence in (Pb,Gd)3(Al,Ga)5O12 : Ce epitaxial films grown from Pb-containing melt solutions. Quantum Electronics, 2017, 47, 922-926.	1.0	2
42	Epitaxial growth of Ce-doped (Pb,Gd)3(Al,Ga)5O12 films and their optical and scintillation properties. Journal of Science: Advanced Materials and Devices, 2020, 5, 95-103.	3.1	2
43	New Properties and Prospects of Hot Intraband Luminescence for Fast timing. Springer Proceedings in Physics, 2019, , 41-53.	0.2	2
44	Time-resolved luminescence spectroscopy of ultrafast emissions in BaGeF6. Journal of Luminescence, 2022, 244, 118729.	3.1	2
45	Cathodoluminescence of monoclinic Li3AlF6 crystals in the spectral region of 150–600Ânm. Radiation Measurements, 2016, 90, 51-54.	1.4	1
46	Kinetics Flash Cathodoluminescence in Crystals with Nonstationary Defectiveness. Advanced Materials Research, 2014, 1040, 218-224.	0.3	0
47	Fast Luminescence Studies of NaLaF4: Pr3+ Class Ceramics. , 2021, , .		0
48	Luminescence properties and energy transfer processes in LiSrPO4 doped with Pr3+ and co-doped with Na+ and Mg2+. Journal of Luminescence, 2021, 240, 118455.	3.1	0
49	Energy Transfer in LiSrPO4 Doped with Pr3+ and Co-Doped with Dy3+, Sm3+. , 2020, , .		0